371 resultados para riffle beetle
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
Background Local Mate Competition (LMC) theory predicts a female should produce a more female-biased sex ratio if her sons compete with each other for mates. Because it provides quantitative predictions that can be experimentally tested, LMC is a textbook example of the predictive power of evolutionary theory. A limitation of many earlier studies in the field is that the population structure and mating system of the studied species are often estimated only indirectly. Here we use microsatellites to characterize the levels of inbreeding of the bark beetle Xylosandrus germanus, a species where the level of LMC is expected to be high. Results For three populations studied, genetic variation for our genetic markers was very low, indicative of an extremely high level of inbreeding (FIS = 0.88). There was also strong linkage disequilibrium between microsatellite loci and a very strong genetic differentiation between populations. The data suggest that matings among non-siblings are very rare (3%), although sex ratios from X. germanus in both the field and the laboratory have suggested more matings between non-sibs, and so less intense LMC. Conclusions Our results confirm that caution is needed when inferring mating systems from sex ratio data, especially when a lack of biological detail means the use of overly simple forms of the model of interest.
Resumo:
Species diversity itself may cause additional species diversity. According to recent findings, some species modify their environment in such a way that they facilitate the creation of new niches for other species to evolve to fill. Given the vast speciesdiversity of insects, the occurrence of such sequential radiation of species is likely common among herbivorous insects and the species that depend on them, many of them being insects as well. Herbivorous insects often have close associations with specific host plants and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate host-specific populations, facilitating speciation. Previous research by our laboratory has established that there are two distinct populations of thegall fly, Eurosta solidaginis (Tephritidae), which attack different species of goldenrods, Solidago altissima (Asteraceae) and S. gigantea. The gall fly’s host-associated differentiation is facilitating the divergence and potential speciation of twosubpopulations of the gall-boring beetle Mordellistena convicta (Mordellidae) by providing new resources (galls on stems of the galdenrods) for the gall-boring beetles. These beetles exist as two host-plant associated populations of inquilines that inhabit the galls induced by the gall fly. While our previous research has provided genetic and behavioral evidence for host-race formation, little is known about the role of their host plants in assortative mating and oviposition-site selection of the gall-boring beetles’ hostassociated populations. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. The present study investigated the role of host-plant volatiles in host fidelity (mating on the host plant) and oviposition preference of M. convicta by measuring its behavioral responses to the host-plant volatile emissions using Y-tube olfactometers. In total, we tested behavioral responses of 615 beetles. Our resultsshow that M. convicta adults are attracted to their natal host galls (67% of S. altissima-emerging beetles and 70% of S. gigantea-emerging beetles) and avoid the alternate host galls (75% of S. altissima-emerging beetles and 66% of S. gigantea-emerging beetles),while showing no preference for, or avoidance of, ungalled plants from either species. This suggests that the gall beetles can orient to the volatile chemicals emitted by the galls and can potentially use them to identify suitable sites for mating and/or oviposition. Thus, host-associated mating and oviposition may play a role in the sequential speciation of the gall-boring beetle.
Resumo:
Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes.