937 resultados para ricostruzione immagini regolarizzazione in norma L1 metodo di tipo Newton formule L-BFGS
Resumo:
Durante il periodo di dottorato, l’attività di ricerca di cui mi sono occupato è stata finalizzata allo sviluppo di metodologie per la diagnostica e l’analisi delle prestazioni di un motore automobilistico. Un primo filone di ricerca è relativo allo sviluppo di strategie per l’identificazione delle mancate combustioni (misfires) in un motore a benzina. La sperimentazione si è svolta nella sala prove della Facoltà di Ingegneria dell’Università di Bologna, nei quali è presente un motore Fiat 1.200 Fire, accoppiato ad un freno a correnti parassite, e comandato da una centralina virtuale, creata mediante un modello Simulink, ed interfacciata al motore tramite una scheda di input/output dSpace. Per quanto riguarda la campagna sperimentale, sono stati realizzati delle prove al banco in diverse condizioni di funzionamento (sia stazionarie, che transitorie), durante le quali sono stati indotti dei misfires, sia singoli che multipli. Durante tali test sono stati registrati i segnali provenienti sia dalla ruota fonica usata per il controllo motore (che, nel caso in esame, era affacciata al volano), sia da quella collegata al freno a correnti parassite. Partendo da tali segnali, ed utilizzando un modello torsionale del sistema motoregiunto-freno, è possibile ottenere una stima sia della coppia motrice erogata dal motore, sia della coppia resistente dissipata dal freno. La prontezza di risposta di tali osservatori è tale da garantirci la possibilità di effettuare una diagnosi misfire. In particolare, si è visto che l’indice meglio correlato ala mancata combustione risultaessere la differenza fra la coppia motrice e la coppia resistente; tale indice risulta inoltre essere quello più semplice da calibrare sperimentalmente, in quanto non dipende dalle caratteristiche del giunto, ma solamente dalle inerzie del sistema. Una seconda attività della quale mi sono occupato è relativa alla stima della coppia indicata in un motore diesel automobilistico. A tale scopo, è stata realizzata una campagna sperimentale presso i laboratori della Magneti Marelli Powertrain (Bologna), nella quale sono state effettuati test in molteplici punti motori, sia in condizioni di funzionamento “nominale”, sia variando artificiosamente alcuni dei fattori di controllo (quali Start of Injection, pressione nel rail e, nei punti ove è stato possibile, tasso di EGR e pressione di sovralimentazione), sia effettuando degli sbilanciamenti di combustibile fra un cilindro e l’altro. Utilizzando il solo segnale proveniente da una ruota fonica posta sul lato motore, e sfruttando un modello torsionale simile a quello utilizzato nella campagna di prove relativa alla diagnosi del misfire, è possibile correlare la componente armonica con frequenza di combustione della velocità all’armonica di pari ordine della coppia indicata; una volta stimata tale componente in frequenza, mediante un’analisi di tipo statistico, è possibile eseguire una stima della coppia indicata erogata dal motore. A completamento dell’algoritmo, sfruttando l’analisi delle altre componenti armoniche presenti nel segnale, è possibile avere una stima dello sbilanciamento di coppia fra i vari cilindri. Per la verifica dei risultati ottenuti, sono stati acquisiti i segnali di pressione provenienti da tutti e quattro i cilindri del motore in esame.
Resumo:
Oxidative stress is considered to be of major relevance for a variety of pathological processes. Thus, it is valuable to identify compounds, which might act as antioxidants, i.e. compounds that antagonize the deleterious action of reactive oxygen species (ROS) on biomolecules. The mode of action of these compounds could be either to scavenge ROS directly or to trigger protective mechanisms inside the cell, thereby resulting in improved defense against ROS. Sulforaphane (SF) (1-isothiocyanato-(4R)-(methylsulfinyl)butane) is a naturally occurring cancer chemopreventive agent found as a precursor glucosinolate in Cruciferous vegetables like broccoli. Although SF is not a direct-acting antioxidant, there is substantial evidence that SF acts indirectly to increase the antioxidant capacity of animal cells and their abilities to cope with oxidative stress. Induction of phase 2 enzymes is one means by which SF enhances the cellular antioxidant capacity. Enzymes induced by SF include Glutathione S-transferases (GST) and NAD[P]H:quinone oxidoreductase (NQO1) which can function as protectors against oxidative stress. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems including the GSH and thioredoxin (Trx) reductase. GSH is an important tripeptide thiol which in addition to being the substrate for GSTs maintains the cellular oxidation– reduction balance and protects cells against free radical species. Aim of the first part of this thesis was to investigate the ability of SF to induce the expression and the activity of different phase 2 and antioxidant enzymes (such as GST, GR, GPx, NQO1, TR, SOD, CAT) in an in vitro model of rat cardiomyocytes, and also to define if SF treatment supprts cells in counteracting oxidative stress induced by H2O2 It is well known that acute exhaustive exercise causes significant reactive oxygen species generation that results in oxidative stress, which can induce negative effects on health and well being. In fact, increased oxidative stress and biomarkers (e.g., protein carbonyls, MDA, and 8- hydroxyguanosine) as well as muscle damage biomarkers (e.g. plasmatic Creatine cinase and Lactate dehydrogenase) have been observed after supramaximal sprint exercises, exhaustive longdistance cycling or running as well as resistance-type exercises, both in trained and untrained humans. Markers of oxidative stress also increase in rodents following exhaustive exercise. Moreover, antioxidant enzyme activities and expressions of antioxidant enzymes are known to increase in response to exhaustive exercise in both animal and human tissues. Aim of this project was to evaluate the effect of SF supplementation in counteracting oxidative stress induced by physical activity through its ability to induce phase 2, and antioxidant enzymes in rat muscle. The results show that SF is a nutraceutical compound able to induce the activity of different phase 2 and antioxidant enzymes in both cardiac muscle and skeletal muscle. Thanks to its actions SF is becoming a promising molecule able to prevent cardiovascular damages induced by oxidative stress and muscle damages induced by acute exhaustive exercise.