981 resultados para relative humidity
Resumo:
Bactrocera tryoni is a polyphagous fruit fly, originally endemic to tropical and subtropical coastal eastern Australia, but now also widely distributed in temperate eastern Australia. In temperate parts of its range, B. tryoni populations show distinct seasonal peaks driven by changing seasonal climates, especially changing temperature. In contrast to temperate areas, the seasonal phenology of B. tryoni in subtropical and tropical parts of its range is poorly documented and the role of climate unknown. Using a large, historical (1940s and 1950s) fruit fly trapping data set, we present the seasonal phenology of B. tryoni at nine sites across Queensland for multiple (two to seven) years per site. We correlate monthly trap data for each site with monthly weather averages (temperature, rainfall and relative humidity) to investigate climatic influences. We also correlate observed population data with predicted population data generated by an existing B. tryoni population model. Supporting predictions from climate driven models, B. tryoni did show year-round breeding at most Queensland sites. However, contrary to predictions, there was a common pattern of a significant population decline in autumn and winter, followed by a rapid population increase in August and then one or more distinct peaks of abundance in spring and summer. Mean monthly fly abundance was significantly different across sites, but was not correlated with altitudinal, latitudinal or longitudinal gradients. There were very few significant correlations between monthly fly population size and weather variables for eight of the nine sites. For the southern site of Gatton fly population abundance was correlated with temperature. Results suggest that while climate factors may be influencing B. tryoni populations in southern subtropical Queensland, they appear to be having only minor or no influence in northern sub-tropical and tropical Queensland. In the discussion we focus on the role of other factors, particularly larval host plant availability, as likely drivers of B. tryoni abundance in tropical and subtropical parts of its range.
Resumo:
Lately, there has been increasing interest in the association between temperature and adverse birth outcomes including preterm birth (PTB) and stillbirth. PTB is a major predictor of many diseases later in life, and stillbirth is a devastating event for parents and families. The aim of this study was to assess the seasonal pattern of adverse birth outcomes, and to examine possible associations of maternal exposure to temperature with PTB and stillbirth. We also aimed to identify if there were any periods of the pregnancy where exposure to temperature was particularly harmful. A retrospective cohort study design was used and we retrieved individual birth records from the Queensland Health Perinatal Data Collection Unit for all singleton births (excluding twins and triplets) delivered in Brisbane between 1 July 2005 and 30 June 2009. We obtained weather data (including hourly relative humidity, minimum and maximum temperature) and air-pollution data (including PM10, SO2 and O3) from the Queensland Department of Environment and Resource Management. We used survival analyses with the time-dependent variables of temperature, humidity and air pollution, and the competing risks of stillbirth and live birth. To assess the monthly pattern of the birth outcomes, we fitted month of pregnancy as a time-dependent variable. We examined the seasonal pattern of the birth outcomes and the relationship between exposure to high or low temperatures and birth outcomes over the four lag weeks before birth. We further stratified by categorisation of PTB: extreme PTB (< 28 weeks of gestation), PTB (28–36 weeks of gestation), and term birth (≥ 37 weeks of gestation). Lastly, we examined the effect of temperature variation in each week of the pregnancy on birth outcomes. There was a bimodal seasonal pattern in gestation length. After adjusting for temperature, the seasonal pattern changed from bimodal, to only one peak in winter. The risk of stillbirth was statistically significant lower in March compared with January. After adjusting for temperature, the March trough was still statistically significant and there was a peak in risk (not statistically significant) in winter. There was an acute effect of temperature on gestational age and stillbirth with a shortened gestation for increasing temperature from 15 °C to 25 °C over the last four weeks before birth. For stillbirth, we found an increasing risk with increasing temperatures from 12 °C to approximately 20 °C, and no change in risk at temperatures above 20 °C. Certain periods of the pregnancy were more vulnerable to temperature variation. The risk of PTB (28–36 weeks of gestation) increased as temperatures increased above 21 °C. For stillbirth, the fetus was most vulnerable at less than 28 weeks of gestation, but there were also effects in 28–36 weeks of gestation. For fetuses of more than 37 weeks of gestation, increasing temperatures did not increase the risk of stillbirth. We did not find any adverse affects of cold temperature on birth outcomes in this cohort. My findings contribute to knowledge of the relationship between temperature and birth outcomes. In the context of climate change, this is particularly important. The results may have implications for public health policy and planning, as they indicate that pregnant women would decrease their risk of adverse birth outcomes by avoiding exposure to high temperatures and seeking cool environments during hot days.
Resumo:
The interaction and relationship between the global warming and the thermal performance buildings are dynamic in nature. In order to model and understand this behavior, different approaches, including keeping weather variable unchanged, morphing approach and diurnal modelling method, have been used to project and generate future weather data. Among these approaches, various assumptions on the change of solar radiation, air humidity and/or wind characteristics may be adopted. In this paper, an example to illustrate the generation of future weather data for the different global warming scenarios in Australia is presented. The sensitivity of building cooling loads to the possible changes of assumed values used in the future weather data generation is investigated. It is shown that with ± 10% change of the proposed future values for solar radiation, air humidity or wind characteristics, the corresponding change in the cooling load of the modeled sample office building at different Australian capital cities would not exceed 6%, 4% and 1.5% respectively. It is also found that with ±10% changes on the proposed weather variables for both the 2070-high future scenario and the current weather scenario, the corresponding change in the cooling loads at different locations may be weaker (up to 2% difference in Hobart for ±10% change in global solar radiation), similar (less than 0.6%) difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% difference in Hobart for ±10% change in relative humidity) in the 2070-high future scenario than in the current weather scenario.
Resumo:
Typical reference year (TRY) weather data is often used to represent the long term weather pattern for building simulation and design. Through the analysis of ten year historical hourly weather data for seven Australian major capital cities using the frequencies procedure of descriptive statistics analysis (by SPSS software), this paper investigates: • the closeness of the typical reference year (TRY) weather data in representing the long term weather pattern; • the variations and common features that may exist between relatively hot and cold years. It is found that for the given set of input data, in comparison with the other weather elements, the discrepancy between TRY and multiple years is much smaller for the dry bulb temperature, relative humidity and global solar irradiance. The overall distribution patterns of key weather elements are also generally similar between the hot and cold years, but with some shift and/or small distortion. There is little common tendency of change between the hot and the cold years for different weather variables at different study locations.
Resumo:
THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.
Resumo:
Although ambient air pollution exposure has been linked with poor health in many parts of the world, no previous study has investigated the effect on morbidity in the city of Adelaide, South Australia. To explore the association between particulate matter (PM) and hospitalisations, including respiratory and cardiovascular admissions in Adelaide, South Australia. Methods: For the study period September 2001 to October 2007, daily counts of all-cause, cardiovascular and respiratory hospital admissions were collected, as well as daily air quality data including concentrations of particulates, ozone and nitrogen dioxide. Visibility codes for presentweather conditions identified dayswhen airborne dust or smoke was observed. The associations between PM and hospitalisations were estimated using timestratified case-crossover analyses controlling for covariates including temperature, relative humidity, other pollutants, day of the week and public holidays. Mean PM10 concentrations were higher in the warm season, whereas PM2.5 concentrations were higher in the cool season. Hospital admissions were associated with PM10 in the cool season and with PM2.5 in both seasons. No significant effect of PM on all-age respiratory admissions was detected, however cardiovascular admissions were associated with both PM2.5 and PM10 in the cool season with the highest effects for PM2.5 (4.48%, 95% CI: 0.74%, 8.36% increase per 10 μg/m3 increase in PM2.5). These findings suggest that despite the city's relatively low levels of air pollution, PMconcentrations are associated with increases in morbidity in Adelaide. Further studies are needed to investigate the sources of PM which may be contributing to the higher cool season effects.
Resumo:
We compared the effects of an ice-slush beverage (ISB) and a cool liquid beverage (CLB) on cycling performance, changes in rectal temperature (T (re)) and stress responses in hot, humid conditions. Ten trained male cyclists/triathletes completed two exercise trials (75 min cycling at similar to 60% peak power output + 50 min seated recovery + 75% peak power output x 30 min performance trial) on separate occasions in 34A degrees C, 60% relative humidity. During the recovery phase before the performance trial, the athletes consumed either the ISB (mean +/- A SD -0.8 +/- A 0.1A degrees C) or the CLB (18.4 +/- A 0.5A degrees C). Performance time was not significantly different after consuming the ISB compared with the CLB (29.42 +/- A 2.07 min for ISB vs. 29.98 +/- A 3.07 min for CLB, P = 0.263). T (re) (37.0 +/- A 0.3A degrees C for ISB vs. 37.4 +/- A 0.2A degrees C for CLB, P = 0.001) and physiological strain index (0.2 +/- A 0.6 for ISB vs. 1.1 +/- A 0.9 for CLB, P = 0.009) were lower at the end of recovery and before the performance trial after ingestion of the ISB compared with the CLB. Mean thermal sensation was lower (P < 0.001) during recovery with the ISB compared with the CLB. Changes in plasma volume and the concentrations of blood variables (i.e., glucose, lactate, electrolytes, cortisol and catecholamines) were similar between the two trials. In conclusion, ingestion of ISB did not significantly alter exercise performance even though it significantly reduced pre-exercise T (re) compared with CLB. Irrespective of exercise performance outcomes, ingestion of ISB during recovery from exercise in hot humid environments is a practical and effective method for cooling athletes following exercise in hot environments.
Resumo:
Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h−1; P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h−1; P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01−0.04; d = 0.96−1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004−0.03; d = 0.77−3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.
Resumo:
This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h−1; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. −3.18 km · h−1; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h−1; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001–0.05; d = 1.31–5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
Concrete made of brick chips as coarse aggregate are extensively used in Bangladesh for construction of different types of structures from residential and commercial buildings to industrial complex. As creep is influenced among many factors including the constituents’ materials, relative humidity and temperature, it is essential to examine the creep behavior for Bangladeshi brick chips made concrete in Bangladeshi environment. In this work, investigation on the behaviour of creep in concrete of same grade made with brick chips collected from various locations under single stage loading was done. With these investigations, a formula was derived to get theoretical creep values for 24 MPa brick chips made concrete in Bangladeshi environment.
Resumo:
PURPOSE: Heat stress might attenuate the effects of carbohydrate on immunoendocrine responses to exercise by increasing endogenous glucose production and reducing the rate of exogenous carbohydrate oxidation. The authors compared the efficacy of carbohydrate consumption on immune responses to exercise in temperate vs. hot conditions. METHODS: Ten male cyclists exercised on 2 separate occasions in temperate (18.1 +/- 0.4 degrees C, 58% +/- 8% relative humidity) and on another 2 occasions in hot conditions (32.2 +/- 0.7 degrees C, 55% +/- 2% relative humidity). On each occasion, the cyclists exercised in a fed state for 90 min at approximately 60% VO2max and then completed a 16.1-km time trial. Every 15 min during the first 90 min of exercise, they consumed 0.24 g/kg body mass of a carbohydrate or placebo gel. RESULTS: Neutrophil counts increased during exercise in all trials (p < .05) and were significantly lower (40%, p = .006) after the carbohydrate than after the placebo trial in 32 degrees C. The concentrations of serum interleukin (IL)-6, IL-8, and IL-10 and plasma granulocyte-colony-stimulating factor, myeloperoxidase, and calprotectin also increased during exercise in all trials but did not differ significantly between the carbohydrate and placebo trials. Plasma norepinephrine concentration increased during exercise in all trials and was significantly higher (50%, p = .01) after the carbohydrate vs. the placebo trial in 32 degrees C. CONCLUSION: Carbohydrate ingestion attenuated neutrophil counts during exercise in hot conditions, whereas it had no effect on any other immune variables in either temperate or hot conditions.
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:00–16:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.