963 resultados para reflectance signature
Resumo:
Summary Background Dermatophytes are the main cause of superficial mycoses in humans and animals. Molecular research has given useful insights into the phylogeny and taxonomy of the dermatophytes to overcome the difficulties with conventional diagnostics. Objectives The Trichophyton mentagrophytes complex consists of anthropophilic as well as zoophilic species. Although several molecular markers have been developed for the differentiation of strains belonging to T. mentagrophytes sensu lato, correct identification still remains problematic, especially concerning the delineation of anthropophilic and zoophilic strains of T. interdigitale. This differentiation is not academic but is essential for selection of the correct antimycotic therapy to treat infected patients. Methods One hundred and thirty isolates identified by morphological characteristics as T. mentagrophytes sensu lato were investigated using restriction fragment length polymorphism (RFLP) and sequence analysis of the polymerase chain reaction-amplified internal transcribed spacer (ITS) region of the rDNA. Results Species of this complex produced individual RFLP patterns obtained by the restriction enzyme MvaI. Subsequent sequence analysis of the ITS1, 5.8S and ITS2 region of all strains, but of T. interdigitale in particular, revealed single unique polymorphisms in anthropophilic and zoophilic strains. Conclusions Signature polymorphisms were observed to be useful for the differentiation of these strains and epidemiological data showed a host specificity among zoophilic strains of T. interdigitale/Arthroderma vanbreuseghemii compared with A. benhamiae as well as characteristic clinical pictures in humans when caused by zoophilic or anthropophilic strains. The delineation is relevant because it helps in determining the correct treatment and provides clues regarding the source of the infection.
Resumo:
Metastatic melanomas are frequently refractory to most adjuvant therapies such as chemotherapies and radiotherapies. Recently, immunotherapies have shown good results in the treatment of some metastatic melanomas. Immune cell infiltration in the tumor has been associated with successful immunotherapy. More generally, tumor infiltrating lymphocytes (TILs) in the primary tumor and in metastases of melanoma patients have been demonstrated to correlate positively with favorable clinical outcomes. Altogether, these findings suggest the importance of being able to identify, quantify and characterize immune infiltration at the tumor site for a better diagnostic and treatment choice. In this paper, we used Fourier Transform Infrared (FTIR) imaging to identify and quantify different subpopulations of T cells: the cytotoxic T cells (CD8+), the helper T cells (CD4+) and the regulatory T cells (T reg). As a proof of concept, we investigated pure populations isolated from human peripheral blood from 6 healthy donors. These subpopulations were isolated from blood samples by magnetic labeling and purities were assessed by Fluorescence Activated Cell Sorting (FACS). The results presented here show that Fourier Transform Infrared (FTIR) imaging followed by supervised Partial Least Square Discriminant Analysis (PLS-DA) allows an accurate identification of CD4+ T cells and CD8+ T cells (>86%). We then developed a PLS regression allowing the quantification of T reg in a different mix of immune cells (e.g. Peripheral Blood Mononuclear Cells (PBMCs)). Altogether, these results demonstrate the sensitivity of infrared imaging to detect the low biological variability observed in T cell subpopulations.
Resumo:
BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.
Resumo:
Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.
Resumo:
The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).
Resumo:
Fertilizer recommendations for cranberry crops are guided by plant and soil tests. However, critical tissue concentration ranges used for diagnostic purposes are inherently biased by nutrient interactions and physiological age. Compositional data analysis using isometric log ratios (ilr) of nutrients as well as time detrending can avoid numerical biases. The objective was to derive unbiased nutrient signature standards for cranberry in Quebec and compare those standards to literature data. Field trials were conducted during 3 consecutive years with varying P treatments at six commercial sites in Quebec. Leaf tissues were analyzed for N, P, K, Ca, Mg, B, Cu, Zn, Mn and Fe. The analytical results were transformed into ilr nutrient balances of parts and groups of parts. High-yield reference ilr values were computed for cranberry yielding greater than 35 Mg ha-1. Many cranberry fields appeared to be over-supplied with K and either under-supplied with Mn or over-supplied with Fe as shown by their imbalanced [K | Ca, Mg] and [Mn | Fe] ratios. Nutrient concentration ranges from Maine and Wisconsin, USA, were combined into ilr values to generate ranges of balances. It was found that these nutrient ranges were much too broad for application in Quebec or outside the Quebec ranges for the [Ca | Mg] and the [Mn | Fe] balances, that were lower compared to those of high yielding cranberry crops in Quebec.
Resumo:
PURPOSE: Pediatric rhabdomyosarcoma (RMS) has two common histologic subtypes: embryonal (ERMS) and alveolar (ARMS). PAX-FOXO1 fusion gene status is a more reliable prognostic marker than alveolar histology, whereas fusion gene-negative (FN) ARMS patients are clinically similar to ERMS patients. A five-gene expression signature (MG5) previously identified two diverse risk groups within the fusion gene-negative RMS (FN-RMS) patients, but this has not been independently validated. The goal of this study was to test whether expression of the MG5 metagene, measured using a technical platform that can be applied to routine pathology material, would correlate with outcome in a new cohort of patients with FN-RMS. EXPERIMENTAL DESIGN: Cases were taken from the Children's Oncology Group (COG) D9803 study of children with intermediate-risk RMS, and gene expression profiling for the MG5 genes was performed using the nCounter assay. The MG5 score was correlated with clinical and pathologic characteristics as well as overall and event-free survival. RESULTS: MG5 standardized score showed no significant association with any of the available clinicopathologic variables. The MG5 signature score showed a significant correlation with overall (N = 57; HR, 7.3; 95% CI, 1.9-27.0; P = 0.003) and failure-free survival (N = 57; HR, 6.1; 95% CI, 1.9-19.7; P = 0.002). CONCLUSIONS: This represents the first, validated molecular prognostic signature for children with FN-RMS who otherwise have intermediate-risk disease. The capacity to measure the expression of a small number of genes in routine pathology material and apply a simple mathematical formula to calculate the MG5 metagene score provides a clear path toward better risk stratification in future prospective clinical trials. Clin Cancer Res; 21(20); 4733-9. ©2015 AACR.
Resumo:
Ease of worldwide travel provides increased opportunities for organisms not only to colonize new environments but also to encounter related but diverged populations. Such events of reconnection and secondary contact of previously isolated populations are widely observed at different time scales. For example, during the quaternary glaciation, sea water level fluctuations caused temporal isolation of populations, often to be followed by secondary contact. At shorter time scales, population isolation and reconnection of viruses are commonly observed, and such events are often associated with epidemics and pandemics. Here, using coalescent theory and simulations, we describe the temporal impact of population reconnection after isolation on nucleotide differences and the site frequency spectrum, as well as common summary statistics of DNA variation. We identify robust genomic signatures of population reconnection after isolation. We utilize our development to infer the recent evolutionary history of human immunodeficiency virus 1 (HIV-1) in Asia and South America, successfully retrieving the successive HIV subtype colonization events in these regions. Our analysis reveals that divergent HIV-1 subtype populations are currently admixing in these regions, suggesting that HIV-1 may be undergoing a process of homogenization, contrary to popular belief.
Resumo:
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal's genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.
Resumo:
Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.
Resumo:
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Resumo:
This paper reports an analytical method for the determination of ambroxol in micellar medium by spot test-diffuse reflectance spectroscopy. The reflectance measurements were performed analyzing the colored compound (λ= 520 nm) produced from the reaction between ambroxol and p-dimethylaminocinnamaldehyde on the surface filter paper. The linear range was from 1.21 × 10"3 to 9.65 × 10"3 mol L-1 (500 - 4000 μg mL-1). The limit of detection and quantification were 3.50 x 10-4 mol L-1 (145 μg mL-1) and 1.16 x 10-3 mol L-1 (481 μg mL-1), respectively. Five commercial samples were analysed and the results obtained by the proposed method were in good agreement with those obtained by the literature method at 95% confidence level.
Resumo:
We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.