916 resultados para refined multiscale entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common water ice (ice I-h) is an unusual solid-the oxygen atoms form a periodic structure but the hydrogen atoms are highly disordered due to there being two inequivalent O-H bond lengths'. Pauling showed that the presence of these two bond lengths leads to a macroscopic degeneracy of possible ground states(2,3), such that the system has finite entropy as the temperature tends towards zero. The dynamics associated with this degeneracy are experimentally inaccessible, however, as ice melts and the hydrogen dynamics cannot be studied independently of oxygen motion(4). An analogous system(5) in which this degeneracy can be studied is a magnet with the pyrochlore structure-termed 'spin ice'-where spin orientation plays a similar role to that of the hydrogen position in ice I-h. Here we present specific-heat data for one such system, Dy2Ti2O7, from which we infer a total spin entropy of 0.67Rln2. This is similar to the value, 0.71Rln2, determined for ice I-h, SO confirming the validity of the correspondence. We also find, through application of a magnetic field, behaviour not accessible in water ice-restoration of much of the ground-state entropy and new transitions involving transverse spin degrees of freedom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, solidification microstructure and texture evolution in grain-refined Ti-6Al-4V and γ-TiAl alloys via trace boron addition are compared with their baseline counterparts. Boron addition resulted in dramatic grain refinement by almost an order of magnitude. The texture developed in these alloys is also markedly different from the baseline alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory, design, and performance of a solid electrolyte twin thermocell for the direct determination of the partial molar entropy of oxygen in a single-phase or multiphase mixture are described. The difference between the Seebeck coefficients of the concentric thermocells is directly related to the difference in the partial molar entropy of oxygen in the electrodes of each thermocell. The measured potentials are sensitive to small deviations from equilibrium at the electrodes. Small electric disturbances caused by simultaneous potential measurements or oxygen fluxes caused by large oxygen potential gradients between the electrodes also disturb the thermoelectric potential. An accuracy of ±0.5 calth K−1 mol−1 has been obtained by this method for the entropies of formation of NiO and NiAl2O4. This “entropy meter” may be used for the measurement of the entropies of formation of simple or complex oxides with significant residual contributions which cannot be detected by heat-capacity measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of Rh203 at high temperature has been determined recently with high precision. The new data are significantly different from those given in thermodynamic compilations.Accurate values for enthalpy and entropy of formation at 298.15 K could not be evaluated from the new data,because reliable values for heat capacity of Rh2O3 were not available. In this article, a new measurement of the high temperature heat capacity of Rh2O3 using differential scanning calorimetry (DSC) is presented.The new values for heat capacity also differ significantly from those given in compilations. The information on heat capacity is coupled with standard Gibbs energy of formation to evaluate values for standard enthalpy and entropy of formation at 289.15 K using a multivariate analysis. The results suggest a major revision in thermodynamic data for Rh2O3. For example, it is recommended that the standard entropy of Rh203 at 298.15 K be changed from 106.27 J mol-' K-'given in the compilations of Barin and Knacke et al. to 75.69 J mol-' K". The recommended revision in the standard enthalpy of formation is from -355.64 kJ mol-'to -405.53 kJ mol".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations have been performed on monatomic sorbates confined within zeolite NaY to obtain the dependence of entropy and self-diffusivity on the sorbate diameter. Previously, molecular dynamics simulations by Santikary and Yashonath J. Phys. Chem. 98, 6368 (1994)], theoretical analysis by Derouane J. Catal. 110, 58 (1988)] as well as experiments by Kemball Adv. Catal. 2, 233 (1950)] found that certain sorbates in certain adsorbents exhibit unusually high self-diffusivity. Experiments showed that the loss of entropy for certain sorbates in specific adsorbents was minimum. Kemball suggested that such sorbates will have high self-diffusivity in these adsorbents. Entropy of the adsorbed phase has been evaluated from the trajectory information by two alternative methods: two-phase and multiparticle expansion. The results show that anomalous maximum in entropy is also seen as a function of the sorbate diameter. Further, the experimental observation of Kemball that minimum loss of entropy is associated with maximum in self-diffusivity is found to be true for the system studied here. A suitably scaled dimensionless self-diffusivity shows an exponential dependence on the excess entropy of the adsorbed phase, analogous to excess entropy scaling rules seen in many bulk and confined fluids. The two trajectory-based estimators for the entropy show good semiquantitative agreement and provide some interesting microscopic insights into entropy changes associated with confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.