950 resultados para recycled nutrients
Resumo:
This report summarizes the purchasing activity for soy based inks and recycled content trash bags for the Iowa DOT.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
The objective of this research project was to evaluate field application results and determine whether the Earth-Gard mat made from recycled material would successfully control erosion and allow vegetation to establish in ditch bottoms and steep slopes. The research would also help determine how steep a grade in the ditch bottoms can be protected from rill and gully erosion and how steep and long a backslope or foreslope can be protected from sheet and rill erosion by the recycled material and allow establishment of vegetation. The Earth-Gard gave satisfactory performance on areas with limited drainage and gradual slopes. Earth-Gard had a longevity of only six months. It was eroded away when used on areas with greater flow or steeper slopes.
Resumo:
The purpose of this research was to evaluate the performance and the use of asphalt rubber binders and recycled rubber granules in asphalt pavement in the state of Iowa. This five year research project was initiated in June 1991 and it was incorporated into Muscatine County Construction Project US 61 from Muscatine to Blue Grass over an existing 10 in. (25.4 cm) by 24 ft (7.3 m) jointed rigid concrete pavement constructed in 1957. The research site consisted of four experimental sections (one section containing rubber chip, one section containing reacted asphalt rubber in both binder and surface, and two sections containing reacted asphalt rubber in surface) and four control sections. This report contains findings of the University of Northern Iowa research team covering selected responsibilities of the research project "Determination of the aging and changing of the conventional asphalt binder and asphalt-rubber binder". Based on the laboratory test, the inclusion of recycled crumb rubber into asphalt affects the ductility of modified binder at various temperatures.
Resumo:
The Iowa Department of Transportation is evaluating the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. There were four projects completed during 1991 and another one constructed in 1992. This project is located on IA 140 north of Kingsley in Plymouth County. The project contains one section with reacted asphalt rubber cement (ARC) used in both binder and surface courses, one with reacted ARC used in the surface course and a conventional binder course, and a conventional mix control section. The reacted rubber binder course was placed on October 17, 1991 and the reacted rubber surface course was placed on October 17, 18, and 19. Inclement weather caused a slight delay in placing or constructing the surface. There was a minor problem with shoving and cracking of the binder course. The construction went well otherwise. Information included in this report consists of test results, construction reports, and cost comparisons.
Resumo:
The Iowa Department of Transportation is evaluating the use of discarded tires in asphalt rubber cement. There have been five projects completed in Iowa. This project is located on US 151 north of Cascade to US 61 in Dubuque. One section consists of an asphalt rubber cement surface and a conventional binder and two sections contain both asphalt rubber cement surface and binder. The control section of conventional asphalt was completed this spring. Information included in this report consists of test results, construction reports, and cost comparisons.
Resumo:
The disposal of discarded tires has become a major problem. Different methods of recycling have been researched. Currently, Iowa is researching the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. Six projects have been completed in Iowa using asphalt rubber cement. This project is located on IA 947 (University Avenue) in Cedar Falls/Waterloo. The project contains one section with asphalt rubber cement used in both the binder and surface courses and one section using asphalt rubber cement in the surface course with a conventional binder. There are two control sections where conventional asphalt pavement was placed.
Resumo:
In recent years, there has been an increased interest in conservation of our resources, preservation of our environment and maintaining our ecology. Recycling of materials is a procedure that will immediately contribute to all of these desirable end results. Our economy is built on private enterprise and profit incentive and in the past, with abundant inexpensive resources, there was little incentive to recycle. Shortages of materials and energy (once considered abundant) along with regulations to protect the environment have emphasized the need for recycling. These environmental conditions coupled with the loss of purchase power by inflation has generated more interest in recycling in the transportation field. The Iowa Department of Transportation (Iowa DOT) is interested in recycling portland cement concrete (pcc) pavement to: 1. Provide aggregate where high quality aggregate is no longer economically available. 2. Eliminate the need for locations to waste the large amount of pavement rubble. 3. Conserve the present aggregate sources. 4. Reduce the need for disrupting land for quarrying purposes. 5. Save fuel and energy by reducing aggregate transportation.
Resumo:
Two objectives were involved in this recycling project: To determine if the asphalt concrete surfacing from an existing roadway could be removed, the existing portland cement concrete pavement broken, removed, crushed to 1-1/2 inch minus, proportioned through a conventional central mix proportioning plant with the addition of concrete sand, and placed with a conventional slipform paver; and to determine if a two course, composite pavement, each course of different mix proportions, could be placed monolithically with conventional slipform equipment after being proportioned and mixed in a conventional central mix plant. The project was completed with no major problem. The objectives were satisfactorily met. The project was a success to the degree that the Iowa D.O.T. is proceeding with at least two projects for the 1977 construction season that will utilize the old pavement as appregate for the new pavement.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
In 1975, Kossuth County had 492 miles of asphalt pavements, sixty percent of which were between l5 and 20 years old. Many of these roadways were in need of rehabilitation. Normally, asphaltic resurfacing would be the procedure for correcting the pavement deterioration. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt cement concrete paving. Kossuth County is one of those areas. The problem is typified by this project. Limestone aggregate to be incorporated into the asphalt resurfacing had to be hauled 53 miles from the quarry to the plant site. The cost of hauling good quality aggregate coupled with the increasing cost of asphalt cement encouraged Kossuth County to investigate the possibility of asphaltic pavement recycling. Another problem, possibly unique to Kossuth County, was the way the original roadways had been constructed. A good clay soil was present under 3 to 4 feet of poorer soil. In order to obtain this good clay soil for subbase construction, the roadway ditches were excavated 1 to 3 feet into the clay soil layer. The resultant roadway tops were several feet above the surrounding farm land and generally less than 26 feet wide. To bring the existing roadway up to current minimum design width, there were two choices: One was to widen the roadway by truck hauling soil and constructing new 4 to 6 foot shoulders. The cost of widening by this method averaged $36,000 per mile in 1975. The other choice was to remove the old pavement and widen the roadway by lowering the grade line. The desire to provide wider paved roadways gave Kossuth County the additional incentive needed to proceed with a pavement recycling project.
Resumo:
Kossuth County is located in North Central Iowa bordering on the State of Minnesota. It is the largest county in Iowa consisting of 28 congressional townships. The population of the county is 23,000 of which 11,000 people live in the rural area. There are 13 towns located in the county with the county seat, Algona, being the largest with a population of 6,100. Major industry of the area is grain farming with some beef and hog production. Naturally, where there is good grain farm land it follows that there is poor soil available for road construction and pavements. However, below the 3 to 4 feet of good farm land of Kossuth there is present a good grade of clay soil which does make an adequate base for surfacing when placed and compacted on top of the roadbed. As early as 1950, the then Kossuth County Engineer, H.M. Smith, embarked on a program of stage construction in building new grades and pavements. The goal of his program was primarily to conserve the county's rapidly dwindling supply of surfacing materials, and also, to realize the side effects of providing smooth and dustless roads for the public. Engineer Smith was fully aware of the poor soils that existed for road construction, but he also knew about the good clay that lay below the farm soil. Consequently, in his grading program he insisted that road ditches be dug deep enough to allow the good clay soil to be compacted on top of the roadbed. The presence of the compacted clay on top of the road resulted in a briding affect over the farm soil. The stage construction program satisfied the objectives of aggregate construction and dust control but did generate other problems which we are now trying to solve as economically as possible.
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
Background:Besides tobacco and alcohol, dietary habits may have a relevant role in oral cavity and pharyngeal (OCP) cancer.Methods:We analysed the role of selected food groups and nutrients on OCP cancer in a case-control study carried out between 1997 and 2009 in Italy and Switzerland. This included 768 incident, histologically confirmed squamous cell carcinoma cases and 2078 hospital controls. Odds ratios (ORs) were estimated using logistic regression models including terms for tobacco, alcohol and other relevant covariates.Results:Significant inverse trends in risk were observed for all vegetables (OR=0.19, for the highest vs the lowest consumption) and all fruits (OR=0.39), whereas significant direct associations were found for milk and dairy products (OR=1.50), eggs (OR=1.71), red meat (OR=1.55), potatoes (OR=1.85) and desserts (OR=1.68), although trends in risk were significant only for potatoes and desserts. With reference to nutrients, significant inverse relations were observed for vegetable protein (OR=0.45, for the highest vs the lowest quintile), vegetable fat (OR=0.54), polyunsaturated fatty acids (OR=0.53), α-carotene (OR=0.51), β-carotene (OR=0.28), β-cryptoxanthin (OR=0.37), lutein and zeazanthin (OR=0.34), vitamin E (OR=0.26), vitamin C (OR=0.40) and total folate (OR=0.34), whereas direct ones were observed for animal protein (OR=1.57), animal fat (OR=2.47), saturated fatty acids (OR=2.18), cholesterol (OR=2.29) and retinol (OR=1.88). Combinations of low consumption of fruits and vegetables, and high consumption of meat with high tobacco and alcohol, led to 10- to over 20-fold excess risk of OCP cancer.Conclusion:Our study confirms and further quantifies that a diet rich in fruits and vegetables and poor in meat and products of animal origin has a favourable role against OCP cancer.
Resumo:
The report summarizes the purchasing activity for soy based inks and recycled content trash bags for the Iowa DOT.