992 resultados para reconfigurable infrastructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable infrastructure demands that declared principles of sustainability are enacted in the processes of its implementation. However, a problem arises if the concept of sustainability is not thoroughly scrutinised in the planning process. The public interest could be undermined when the rhetoric of sustainability is used to substantiate a proposed plan. This chapter analyses the manifestation of sustainable development in the Boggo Road Busway Plan in Brisbane, Australia against the sustainability agenda set in the South East Queensland Regional and Transport Plans. Although the construction of the Busway was intended to improve public transport access in the region, its implementation drew significant environmental concerns. Local community groups contested the ‘sustainability’ concept deployed in Queensland’s infrastructure planning. Their challenges resulted in important concessions in the delivery of the Busway plan. This case demonstrates that principles of sustainable infrastructure should be measurable and that local communities be better informed in order to fulfil the public interest in regional planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrastructure organisations are operating in an increasingly challenging business environment as a result of globalisation, privatisation and deregulation. Under such circumstances, asset managers need to manage their infrastructure assets effectively in order to contribute to the overall performance of their organisation. In an external business environment that is constantly changing, extant literature on strategic management advocates a resourced--�]based view (RBV) approach that focuses on factors internal to the organisation such as resources and capabilities to sustain organisation performance. The aim of this study is to explore the core capabilities needed in the management of infrastructure assets. Using a multiple case study research strategy focusing on transport infrastructure, this research firstly examines the goals of infrastructure asset management and their alignment with broader corporate goals of an infrastructure organisation. It then examines the strategic infrastructure asset management processes that are needed to achieve these goals. The core capabilities that can support the strategic infrastructure asset management processes are then identified. This research produced a number of findings. First, it provided empirical evidence that asset management goals are being pursued with the aim of supporting the broader business goals of infrastructure organisations. Second, through synthesising the key asset management processes deemed necessary to achieve the asset management goals, a strategic infrastructure asset management model is proposed. Third, it identified five core capabilities namely stakeholder connectivity, cross-functional, relational, technology absorptive and integrated information management capability as central to executing the strategic infrastructure asset management processes well. These findings culminate in the development of a capability model to improve the performance of infrastructure assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TCP is a dominant protocol for consistent communication over the internet. It provides flow, congestion and error control mechanisms while using wired reliable networks. Its congestion control mechanism is not suitable for wireless links where data corruption and its lost rate are higher. The physical links are transparent from TCP that takes packet losses due to congestion only and initiates congestion handling mechanisms by reducing transmission speed. This results in wasting already limited available bandwidth on the wireless links. Therefore, there is no use to carry out research on increasing bandwidth of the wireless links until the available bandwidth is not optimally utilized. This paper proposed a hybrid scheme called TCP Detection and Recovery (TCP-DR) to distinguish congestion, corruption and mobility related losses and then instructs the data sending host to take appropriate action. Therefore, the link utilization is optimal while losses are either due to high bit error rate or mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of research data management infrastructure and services and making research data more discoverable and accessible to the research community is a key priority at the national, state and individual university level. This paper will discuss and reflect upon a collaborative project between Griffith University and the Queensland University of Technology to commission a Metadata Hub or Metadata Aggregation service based upon open source software components. It will describe the role that metadata aggregation services play in modern research infrastructure and argue that this role is a critical one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investment begins with imagining that doing something new in the present will lead to a better future. Investment can vary from incidental improvements as safe and beneficial side-effects of current activity through to a more dedicated and riskier disinvestment in current methods of operation and reinvestment in new processes and products. The role of government has an underlying continuity determined by its constitution that authorises a parliament to legislate for peace, order and good government. ‘Good government’ is usually interpreted as improving the living standards of its citizens. The requirements for social order and social cohesion suggest that improvements should be shared fairly by all citizens through all of their lives. Arguably, the need to maintain an individual’s metabolism has a social counterpart in the ‘collective metabolism’ of a sustainable and productive society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current rapid increases in the scope of regional development and the reach of technology have combined with the expanding scale of modern settlements to focus growing attention on infrastructure provisionneeds. This has included organisational and funding systems, the management of new technologies and regional scale social provisions. In this chapter, the evolution of urban and regional infrastructure is traced from its earliest origins in the growth of organized societies of 5 ,000 years ago. Infrastructure needs and provision are illustrated for the arenas of metropolitan, provincial and rural regions. Rural infrastructure examples and lessons are drawn from global case studies. Recent expansions of the scope of infrastructure are examined and issues of governance and process discussed. Phased planning processes are related to cycles of program adoption, objective formulation, option evaluation and programme budgeting. Issues of privatisation and public interest are considered. Matters of contemporary global significance are explored, including the current economic contraction and the effects of global climate change. Conclusions are drawn about the role and importance of linking regional planning to coherent regional infrastructure programs and budgets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to develop a conceptual framework that can be used to identify capabilities needed in the management of infrastructure assets. Design/methodology/approach – This paper utilises a qualitative approach to analyse secondary data in order to develop a conceptual framework that identifies capabilities for strategic infrastructure asset management. Findings – In an external business environment that is undergoing rapid change, it is more appropriate to focus on factors internal to the organisation such as resources and capabilities as a basis to develop competitive advantage. However, there is currently very little understanding of the internal capabilities that are appropriate for infrastructure asset management. Therefore, a conceptual framework is needful to guide infrastructure organisations in the identification of capabilities. Research limitations/implications – This is a conceptual paper and future empirical research should be conducted to validate the propositions made in the paper. Practical implications – The paper clearly argues the need for infrastructure organisations to adopt a systematic approach to identifying the capabilities needed in the management of strategic infrastructure assets. The discussion on the impact of essential capabilities is useful in providing the impetus for managers who operate in a deregulated infrastructure business landscape to review their existing strategies. Originality/value – The paper provides a new perspective on how asset managers can create value for their organisations by investing in the relevant capabilities.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increasing pressure to deliver environmentally friendly and socially responsible highway infrastructure projects, stakeholders are also putting significant focus on the early identification of financial viability and outcomes for these projects. Infrastructure development typically requires major capital input, which may cause serious financial constraints for investors. The push for sustainability has added new dimensions to the evaluation of highway projects, particularly on the cost front. Comprehensive analysis of the cost implications of implementing place sustainable measures in highway infrastructure throughout its lifespan is highly desirable and will become an essential part of the highway development process and a primary concern for decision makers. This paper discusses an ongoing research which seeks to identify cost elements and issues related to sustainable measures for highway infrastructure projects. Through life-cycle costing analysis (LCCA), financial implications of pursuing sustainability, which are highly concerned by the construction stakeholders, have been assessed to aid the decision making when contemplating the design, development and operation of highway infrastructure. An extensive literature review and evaluation of project reports from previous Australian highway projects was first conducted to reveal all potential cost elements. This provided the foundation for a questionnaire survey, which helped identify those specific issues and related costs that project stakeholders consider to be most critical in the Australian industry context. Through the survey, three key stakeholders in highway infrastructure development, namely consultants, contractors and government agencies, provided their views on the specific selection and priority ranking of the various categories. Findings of the survey are being integrated into proven LCCA models for further enhancement. A new LCCA model will be developed to assist the stakeholders to evaluate costs and investment decisions and reach optimum balance between financial viability and sustainability deliverables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of asset management is not a new but an evolving idea that has been attracting attention of many organisations operating and/or owning some kind of infrastructure assets. The term asset management have been used widely with fundamental differences in interpretation and usage. Regardless of the context of the usage of the term, asset management implies the process of optimising return by scrutinising performance and making key strategic decisions throughout all phases of an assets lifecycle (Sarfi and Tao, 2004). Hence, asset management is a philosophy and discipline through which organisations are enabled to more effectively deploy their resources to provide higher levels of customer service and reliability while balancing financial objectives. In Australia, asset management made its way into the public works in 1993 when the Australian Accounting Standard Board issued the Australian Accounting Standard 27 – AAS27. Standard AAS27 required government agencies to capitalise and depreciate assets rather than expense them against earnings. This development has indirectly forced organisations managing infrastructure assets to consider the useful life and cost effectiveness of asset investments. The Australian State Treasuries and the Australian National Audit Office was the first organisation to formalise the concepts and principles of asset management in Australia in which they defined asset management as “ a systematic, structured process covering the whole life of an asset”(Australian National Audit Office, 1996). This initiative led other Government bodies and industry sectors to develop, refine and apply the concept of asset management in the management of their respective infrastructure assets. Hence, it can be argued that the concept of asset management has emerged as a separate and recognised field of management during the late 1990s. In comparison to other disciplines such as construction, facilities, maintenance, project management, economics, finance, to name a few, asset management is a relatively new discipline and is clearly a contemporary topic. The primary contributors to the literature in asset management are largely government organisations and industry practitioners. These contributions take the form of guidelines and reports on the best practice of asset management. More recently, some of these best practices have been made to become a standard such as the PAS 55 (IAM, 2004, IAM, 2008b) in UK. As such, current literature in this field tends to lack well-grounded theories. To-date, while receiving relatively more interest and attention from empirical researchers, the advancement of this field, particularly in terms of the volume of academic and theoretical development is at best moderate. A plausible reason for the lack of advancement is that many researchers and practitioners are still unaware of, or unimpressed by, the contribution that asset management can make to the performance of infrastructure asset. This paper seeks to explore the practices of organisations that manage infrastructure assets to develop a framework of strategic infrastructure asset management processes. It will begin by examining the development of asset management. This is followed by the discussion on the method to be adopted for this paper. Next, is the discussion of the result form case studies. It first describes the goals of infrastructure asset management and how they can support the broader business goals. Following this, a set of core processes that can support the achievement of business goals are provided. These core processes are synthesised based on the practices of asset managers in the case study organisations.