269 resultados para recharge
Resumo:
Temperature reconstructions for recent centuries are the basis of estimations of the natural variability in the climate system before and during the onset of anthropogenic perturbation. Here we present, for the first time, an independent and physically based reconstruction of mean annual temperature over the past half millennium obtained from groundwater in France. The reconstructed noble gas temperature (NGT) record suggests cooler than present climate conditions throughout the 16th-19th centuries. Periods of warming occur in the 17th-18th and 20th century, while cooling is reconstructed in the 19th century. A noticeable coincidence with other temperature records is demonstrated. Deuterium excess varies in parallel with the NGT, and indicates variation in the seasonality of the aquifer recharge; whereas high excess air in groundwater indicates periods with high oscillations of the water table.
Resumo:
Steep mountain catchments typically experience large sediment pulses from hillslopes which are stored in headwater channels and remobilized by debris-flows or bedload transport. Event-based sediment budget monitoring in the active Manival debris-flow torrent in the French Alps during a two-year period gave insights into the catchment-scale sediment routing during moderate rainfall intensities which occur several times each year. The monitoring was based on intensive topographic resurveys of low- and high-order channels using different techniques (cross-section surveys with total station and high-resolution channel surveys with terrestrial and airborne laser scanning). Data on sediment output volumes from the main channel were obtained by a sediment trap. Two debris-flows were observed, as well as several bedload transport flow events. Sediment budget analysis of the two debris-flows revealed that most of the debris-flow volumes were supplied by channel scouring (more than 92%). Bedload transport during autumn contributed to the sediment recharge of high-order channels by the deposition of large gravel wedges. This process is recognized as being fundamental for debris-flow occurrence during the subsequent spring and summer. A time shift of scour-and-fill sequences was observed between low- and high-order channels, revealing the discontinuous sediment transfer in the catchment during common flow events. A conceptual model of sediment routing for different event magnitude is proposed.
Resumo:
Pohjavesihankkeen onnistunut toteutus vaatii tietoa useilta eri aloilta. Perustieto pohjavesistä, niiden muodostumisesta ja esiintymisestä, pohjavesiä koskevan lainsäädännön ja vedenottoon tarvittavien lupien tuntemus, pohjavesitutkimuksen eri vaiheiden hallitseminen ja tieto näiden vaiheiden kestoon, aikatauluun ja kustannuksiin vaikuttavista tekijöistä ovat kaikki onnistuneen hankkeen edellytyksiä. Tässä diplomityössä selvitetään pohjavesihankkeen eri vaiheet sekä niiden sisältö ja tarvittavat toimenpiteet vesihuoltolaitoksen kannalta.Työssä tarkastellaan yleisesti kunnallista vesihuoltoa Suomessa ja Suomen pohjavesioloja. Lisäksi tarkastellaan pohjavesiä koskevaa lainsäädäntöä sekä pohjavesialueiden kartoituksen ja luokituksen nykytilannetta. Työssä käsitellään esiintymäkohtaisen pohjavesitutkimuksen eri vaiheet menetelmineen. Pohjavesitutkimusten ja pohjavedenoton vaatimat luvat käydään läpi.Pohjavesihanke on jaettu osiin, joiden kestoa ja niihin vaikuttavia tekijöitä tarkastellaan. Lisäksi pohjavesihankkeesta on tehty esimerkkiaikataulu, jossa eri työvaiheiden vaatimat ajat esitetään suhteessa toisiinsa. Hankkeen kustannukset on jaettu henkilöstö-, materiaali- ja muihin kustannuksiin. Näiden rakenne eri työvaiheissa on selvitetty.Joensuun Veden Paavonlammen alueella Kiihtelysvaaran kunnassa tekemän esimerkkihankkeen avulla havainnollistetaan sitä, millä tavoin käyttöön otettavan pohjavesialueen ominaisuudet sekä käytettävissä oleva työvoima ja kalusto vaikuttavat kustannuksiin, aikatauluun ja eri tutkimusvaiheiden tarpeellisuuteen.Pohjavesihanketta aloitettaessa ja sen aikana on kiinnitettävä erityisesti huomiota avoimeen tiedottamiseen vaikutusalueen asukkaille ja maanomistajille. Keskeistä työn edetessä on ottaa huomioon se, että pohjavesihankkeen toteutus etenee vaiheittain aikaisempien tulosten perusteella.
Resumo:
Residues of herbicides from sugarcane were monitored in waters and sediments of Corumbataí River and tributaries. Ametryne, atrazine, simazine, hexazinone, glyphosate, and clomazone were detected in water samples, with negligible levels of ametryne and glyphosate in sediment samples. The area of recharge of the Guarani aquifer presented the highest triazine and clomazone levels. The triazines were detected at higher levels, with atrazine above Brazil's potability and quality standards. Total herbicide levels at some sampling points were 13 times higher than the European Community potability limit. There is no Brazilian standard for ametryne, although the risk is larger due to ametryne's higher toxicity for the aquatic biota.
Resumo:
São Paulo state (Brazil) has an important area of sugarcane production, mainly for obtaining alcohol and sugar, where there is an intensive use of pesticides. An important recharge zone of Guarani aquifer, with supplies water for the local population, is located at Ribeirão Preto city, so the local behavior of pesticides must be investigated. The GUS index was obtained by using the paramenters Koc and half-life for hezazinone herbicide, determinated in representative soil of this region. This study has demonstrated that there is potential risks of hexazinone leaching to ground water, indicating that this herbicide must be monitored in ground water.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
People in several parts of the world as well in India countenance an immense confront to meet the basic needs of water. The crisis is not due to lack of fresh water but its availability in adequate superiority. Environmental quality objectives should be developed in order to define acceptable loads on the terrain. There has been a number of initiatives in water quality monitoring but the next step towards improving its quality hasn’t taken the required pace. Today, there is a growing need to create awareness among citizens on the different technologies available for improving the water quality. Monitoring facilitate to apprehend how land and water use distress the quality of water and assist in estimating the extent of pollution. Once these issues are recognized, people can work towards local solutions to manage the indispensable resource effectively. Ground waters are extremely precious resources and in many countries together with India they represent the most important drinking water supply. They are generally microbiologically pure and, in most cases, they do not need any treatment. This communiqué is intended to act as a channel on the various paraphernalia and techniques accessible for groundwater quality assessment and suggesting the assured precautionary measures to embark on environment management. This learning is imperative considering that groundwater as the exclusive source of drinking water in the region which not makes situation alarming but also calls for immediate attention. The scope of this work is somewhat vast. Water quality in Ernakulam district is getting deteriorated due to the fast growth of urbanization. The closure of several water bodies due to land development and construction prevents infiltration of rainwater into the ground and hence recharge the aquifers. Most of the aquifers are getting polluted from the industrial effluents and chemicals and fertilizers used in agriculture. Such serious issues require proper monitoring of groundwater and steps are to be taken for remedial measures. This study helps in the total protection of the rich resource of groundwater and its sustainability. Socio-economic aspect covered could be used for conducting further individual case studies and to suggest remedial measures on a scientific basis. The specific study taken up for 15 sites can be further extended to the sources of pollution, especially industrial and agriculture
Resumo:
This is an attempt to understand the important factors that control the occurrence, development and hydrochemical evolution of groundwater resources in sedimentary multi aquifer systems. The primary objective of this work is an integrated study of the hydrogeology and hydrochemistry with a view to elucidate the hydrochemical evolution of groundwater resources in the aquifer systems. The study is taken up in a typical coastal sedimentary aquifer system evolved under fluvio-marine environment in the coastal area of Kerala, known as the Kuttanad. The present study has been carried out to understand the aquifer systems, their inter relationships and evolution in the Kuttanad area of Kerala. The multi aquifer systems in the Kuttanad basin were formed from the sediments deposited under fluvio-marine and fluvial depositional environments and the marine transgressions and regressions in the geological past and palaeo climatic conditions influenced the hydrochemical environment in these aquifers. The evolution of groundwater and the hydrochemical processes involved in the formation of the present day water quality are elucidated from hydrochemical studies and the information derived from the aquifer geometry and hydraulic properties. Kuttanad area comprises of three types of aquifer systems namely phreatic aquifer underlain by Recent confined aquifer followed by Tertiary confined aquifers. These systems were formed by the deposition of sediments under fluvio-marine and fluvial environment. The study of the hydrochemical and hydraulic properties of the three aquifer systems proved that these three systems are separate entities. The phreatic aquifers in the area have low hydraulic gradients and high rejected recharge. The Recent confined aquifer has very poor hydraulic characteristics and recharge to this aquifer is very low. The Tertiary aquifer system is the most potential fresh water aquifer system in the area and the groundwater flow in the aquifer is converging towards the central part of the study area (Alleppey town) due to large scale pumping of water for water supply from this aquifer system. Mixing of waters and anthropogenic interferences are the dominant processes modifying the hydrochemistry in phreatic aquifers. Whereas, leaching of salts and cation exchange are the dominant processes modifying the hydrochemistry of groundwater in the confined aquifer system of Recent alluvium. Two significant chemical reactions modifying the hydrochemistry in the Recent aquifers are oxidation of iron in ferruginous clays which contributes hydrogen ions and the decomposition of organic matter in the aquifer system which consumes hydrogen ions. The hydrochemical environment is entirely different in the Tertiary aquifers as the groundwater in this aquifer system are palaeo waters evolved during various marine transgressions and regressions and these waters are being modified by processes of leaching of salts, cation exchange and chemical reactions under strong reducing environment. It is proved that the salinity observed in the groundwaters of Tertiary aquifers are not due to seawater mixing or intrusion, but due to dissolution of salts from the clay formations and ion exchange processes. Fluoride contamination in this aquifer system lacks a regional pattern and is more or less site specific in natureThe lowering of piezometric heads in the Tertiary aquifer system has developed as consequence of large scale pumping over a long period. Hence, puping from this aquifer system is to be regulated as a groundwater management strategy. Pumping from the Tertiary aquifers with high capacity pumps leads to well failures and mixing of saline water from the brackish zones. Such mixing zones are noticed from the hydrochemical studies. This is the major aquifer contamination in the Tertiary aquifer system which requires immediate attention. Usage of pumps above 10 HP capacities in wells taping Tertiary aquifers should be discouraged for sustainable development of these aquifers. The recharge areas need to be identified precisely for recharging the aquifer systems throughartificial means.
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.
Resumo:
De acuerdo con el Programa de la Naciones Unidas para el Medio Ambiente (PNUMA), la producción más limpia «es una estrategia ambiental preventiva integrada que se aplica a los procesos, productos y servicios a fin de aumentar la eficiencia y reducir los riesgos para los seres humanos y el ambiente.» (Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), 2006) Esta estrategia es aplicable para cualquier proceso, producto o servicio y contiene diversas acciones que incluyen sencillos pasos que van desde pequeños cambios en los procedimientos operacionales de fácil e inmediata ejecución, hasta cambios mayores que impliquen la sustitución de materias primas, insumos o líneas de producción a unas más eficientes. De acuerdo con la investigación realizada, se formuló un plan estratégico de PML para la Universidad del Rosario que permita la conservación de las materias primas, como el agua y el manejo energético eficiente, la reducción de las materias primas toxicas, en cuanto a toxicidad y cantidad, y la reducción de emisiones y residuos que van al agua y a la atmósfera impactando el entorno a causa de los procesos que se desarrollan en la Universidad para la prestación de sus servicios. En este orden de ideas, la Producción más Limpia implementada en la Universidad requiere que se modifiquen ciertas actitudes, el desarrollo de una gestión ambiental responsable, la creación de políticas convenientes y la evaluación de nuevas opciones tecnologías que impacten de manera positiva su implementación a través de las siguientes técnicas: • Mejoras en el proceso • Buenas prácticas operativas • Mantenimiento de equipos • Reutilización y reciclaje • Cambios en la materia prima • Cambios en la tecnología De esta manera los resultados presentarán un modelo transformador para la Institución, que permita su perdurabilidad, convirtiéndola en una Universidad pionera capaz de disminuir su impacto de operaciones en la sociedad.
Resumo:
Blue Leaf es un proyecto de emprendimiento que consiste en la elaboración y venta directa de bebidas naturales a base de frutas a través de un food truck en la ciudad de Bogotá. Tras revisar algunas tendencias actuales como la cultura Fitness y el Juicing, y tras identificar un problema sobre los hábitos de alimentación desordenados que llevan muchas personas, nace Blue Leaf como una alternativa de alimentación saludable, natural, práctica y diferente. El negocio contará inicialmente con un portafolio de 12 bebidas divididas en tres categorías. Primero, las bebidas alimenticias cuentan con altos contenidos nutricionales y sirven como fuente de alimento práctico y saludable; segundo, las bebidas funcionales, están diseñadas para ofrecer beneficios específicos de salud como desintoxicar, ayudar a bajar de peso o fortalecer las defensas; por último, las bebidas fuente de energía, cuentan con altos niveles de vitaminas y minerales que le permiten a los consumidores recargar energías rápidamente y continuar con sus actividades diarias. Adicionalmente, Blue Leaf ofrecerá la oportunidad a los consumidores de hacer su propia bebida, dándoles la posibilidad de elegir de entre más de 50 ingredientes entre bases, frutas, verduras, hierbas, semillas, adiciones y endulzantes. El proyecto es liderado por Paola Higuera Rodríguez y David Santiago Soto, ambos estudiantes de la Escuela de Administración de la Universidad del Rosario
Resumo:
Disequilibria between Pb-210 and Ra-226 can be used to trace magma degassing, because the intermediate nuclides, particularly Rn-222, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for (Pb-210/Ra-226). Both excesses and deficits of Pb-210 are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by Pb-210 deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up Pb-210 excess is much shorter (months) as can be observed from steady increases of (Pb-210/Ra-226) with time during 1980-1982. The formation of Pb-210 excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of (Pb-210/Ra-226) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both Pb-210 deficits and Pb-210 excesses, cannot be reconciled in a single event. Rather Pb-210 deficits are associated with pre-eruptive diffuse degassing, while Pb-210 excesses document the more vigorous degassing associated with eruption and recharge of the system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Temporal and spatial patterns of soil water content affect many soil processes including evaporation, infiltration, ground water recharge, erosion and vegetation distribution. This paper describes the analysis of a soil moisture dataset comprising a combination of continuous time series of measurements at a few depths and locations, and occasional roving measurements at a large number of depths and locations. The objectives of the paper are: (i) to develop a technique for combining continuous measurements of soil water contents at a limited number of depths within a soil profile with occasional measurements at a large number of depths, to enable accurate estimation of the soil moisture vertical pattern and the integrated profile water content; and (ii) to estimate time series of soil moisture content at locations where there are just occasional soil water measurements available and some continuous records from nearby locations. The vertical interpolation technique presented here can strongly reduce errors in the estimation of profile soil water and its changes with time. On the other hand, the temporal interpolation technique is tested for different sampling strategies in space and time, and the errors generated in each case are compared.
A model-based assessment of the effects of projected climate change on the water resources of Jordan
Resumo:
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
Resumo:
We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice–ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987–1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997–2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.