933 resultados para real-time scheduling algorithm
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.
Resumo:
In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley’s algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].
Resumo:
5th Brazilian Symposium on Computing Systems Engineering, SBESC 2015 (SBESC 2015). 3 to 6, Nov, 2015. Foz do Iguaçu, Brasil.
Resumo:
This work proposes a real-time algorithm to generate a trajectory for a 2 link planar robotic manipulator. The objective is to minimize the space/time ripple and the energy requirements or the time duration in the robot trajectories. The proposed method uses an off line genetic algorithm to calculate every possible trajectory between all cells of the workspace grid. The resultant trajectories are saved in several trees. Then any trajectory requested is constructed in real-time, from these trees. The article presents the results for several experiments.
Resumo:
The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.
Resumo:
Presented at IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015.
Resumo:
INTRODUCTION: HTLV-1/2 screening among blood donors commonly utilizes an enzyme-linked immunosorbent assay (EIA), followed by a confirmatory method such as Western blot (WB) if the EIA is positive. However, this algorithm yields a high rate of inconclusive results, and is expensive. METHODS: Two qualitative real-time PCR assays were developed to detect HTLV-1 and 2, and a total of 318 samples were tested (152 blood donors, 108 asymptomatic carriers, 26 HAM/TSP patients and 30 seronegative individuals). RESULTS: The sensitivity and specificity of PCR in comparison with WB results were 99.4% and 98.5%, respectively. PCR tests were more efficient for identifying the virus type, detecting HTLV-2 infection and defining inconclusive cases. CONCLUSIONS: Because real-time PCR is sensitive and practical and costs much less than WB, this technique can be used as a confirmatory test for HTLV in blood banks, as a replacement for WB.
Resumo:
Monitoring, object-orientation, real-time, execution-time, scheduling
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.
Resumo:
BACKGROUND: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. RESULTS: We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. CONCLUSIONS: In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Resumo:
This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
Currently, laser scribing is growing material processing method in the industry. Benefits of laser scribing technology are studied for example for improving an efficiency of solar cells. Due high-quality requirement of the fast scribing process, it is important to monitor the process in real time for detecting possible defects during the process. However, there is a lack of studies of laser scribing real time monitoring. Commonly used monitoring methods developed for other laser processes such a laser welding, are sufficient slow and existed applications cannot be implemented in fast laser scribing monitoring. The aim of this thesis is to find a method for laser scribing monitoring with a high-speed camera and evaluate reliability and performance of the developed monitoring system with experiments. The laser used in experiments is an IPG ytterbium pulsed fiber laser with 20 W maximum average power and Scan head optics used in the laser is Scanlab’s Hurryscan 14 II with an f100 tele-centric lens. The camera was connected to laser scanner using camera adapter to follow the laser process. A powerful fully programmable industrial computer was chosen for executing image processing and analysis. Algorithms for defect analysis, which are based on particle analysis, were developed using LabVIEW system design software. The performance of the algorithms was analyzed by analyzing a non-moving image from the scribing line with resolution 960x20 pixel. As a result, the maximum analysis speed was 560 frames per second. Reliability of the algorithm was evaluated by imaging scribing path with a variable number of defects 2000 mm/s when the laser was turned off and image analysis speed was 430 frames per second. The experiment was successful and as a result, the algorithms detected all defects from the scribing path. The final monitoring experiment was performed during a laser process. However, it was challenging to get active laser illumination work with the laser scanner due physical dimensions of the laser lens and the scanner. For reliable error detection, the illumination system is needed to be replaced.