922 resultados para reactor
Photocatalytic degradation of aqueous methyl-tert-butyl-ether (MTBE) in a supported-catalyst reactor
Muitiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
Resumo:
The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends: on the core simulator used; the GA itself is code independent.
Resumo:
The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Incineration, and virtual elimination, of waste stockpiles is possible in a thorium (Th) fuelled critical or subcritical fast reactor. Fuel cycles producing a net decrease in TRUs are possible in conventional pressurised water reactors (PWRs). However, minor actinides (MAs) have a detrimental effect on reactivity and stability, ultimately limiting the quality and quantity of waste that can be incinerated. In this paper, we propose using a thorium-retained-actinides fuel cycle in PWRs, where the reactor is fuelled with a mixture of thorium and TRU waste, and after discharge all actinides are reprocessed and returned to the reactor. To investigate the feasibility and performance of this fuel cycle an assembly-level analysis for a one-batch reloading strategy was completed over 125 years of operation using WIMS 9. This one-batch analysis was performed for simplicity, but allowed an indicative assessment of the performance of a four-batch fuel management strategy. The build-up of 233U in the reactor allowed continued reactive and stable operation, until all significant actinide populations had reached pseudo-equilibrium in the reactor. It was therefore possible to achieve near-complete transuranic waste incineration, even for fuels with significant MA content. The average incineration rate was initially around 330 kg per GW th year and tended towards 250 kg per GW th year over several decades: a performance comparable to that achieved in a fast reactor. Using multiple batch fuel management, competitive or improved end-of-cycle burn-up appears achievable. The void coefficient (VC), moderator temperature coefficient (MTC) and Doppler coefficient remained negative. The quantity of soluble boron required for a fixed fuel cycle length was comparable to that for enriched uranium fuel, and acceptable amounts can be added without causing a positive VC or MTC. This analysis is limited by the consideration of a single fuel assembly, and it will be necessary to perform a full core coupled neutronic-thermal-hydraulic analysis to determine if the design in its current form is feasible. In particular, the potential for positive VCs if the core is highly or locally voided is a cause for concern. However, these results provide a compelling case for further work on concept feasibility and fuel management, which is in progress. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Accelerator Driven Subcritical Reactor (ADSR) is one of the reactor designs proposed for future nuclear energy production. Interest in the ADSR arises from its enhanced and intrinsic safety characteristics, as well as its potential ability to utilize the large global reserves of thorium and to burn legacy actinide waste from other reactors and decommissioned nuclear weapons. The ADSR concept is based on the coupling of a particle accelerator and a subcritical core by means of a neutron spallation target interface. One of the candidate accelerator technologies receiving increasing attention, the Fixed Field Alternating Gradient (FFAG) accelerator, generates a pulsed proton beam. This paper investigates the impact of pulsed proton beam operation on the mechanical integrity of the fuel pin cladding. A pulsed beam induces repetitive temperature changes in the reactor core which lead to cyclic thermal stresses in the cladding. To perform the thermal analysis aspects of this study a code that couples the neutron kinetics of a subcritical core to a cylindrical geometry heat transfer model was developed. This code, named PTS-ADS, enables temperature variations in the cladding to be calculated. These results are then used to perform thermal fatigue analysis and to predict the stress-life behaviour of the cladding. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Previous work has indicated that TRU waste can be virtually eliminated in a pressurised water reactor (PWR) fuelled with a mixture of thorium and TRU waste, when all actinides are returned to the reactor after reprocessing. However, the optimal configuration for a fuel assembly operating this fuel cycle is likely to differ from the current configuration. In this paper, the differences in performance obtained in a reduced-moderation PWR operating this fuel cycle were investigated using WIMS. The chosen configuration allowed an increase of at least 20% in attainable burn-up for a given TRU enrichment. This will be especially important if the practical limit on TRU enrichment is low. The moderator reactivity coefficients limit the enrichment possible in the reactor, and this limit is particularly severe if a negative void coefficient is required for a fully voided core. Several strategies have been identified to mitigate this. Specifically, the control system should be designed to avoid a detrimental effect on moderator reactivity coefficients. The economic viability of this concept is likely to be dependent on the achievable thermal-hydraulic operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a computational study of lean premixed high pressure methane-air flames, using Computational Fluid Dynamics (CFD) together with a reactor network approach. A detailed chemical reaction mechanism is employed to predict pollutant concentrations, placing emphasis on nitrogen oxide emissions. The reacting flow field is divided into separate zones in which homogeneity of the physical and chemical conditions prevails. The defined zones are interconnected forming an Equivalent Reactor Network (ERN). Three flames are examined for which experimental data is available. Flame A is characterised by an equivalence ratio of 0.43 while Flames B and C are richer with equivalence ratios of 0.5 and 0.56 respectively. Computations are performed for a range of operating conditions, quantifying the effect in the emitted NOx levels. Model predictions are compared against the available experimental data. Sensitivity analysis is performed to investigate the effect of the network size, in order to define the optimum number of reactors for accurate predictions of the species mass fractions. © 2012 Elsevier Ltd. All rights reserved.