986 resultados para quantum yield
Resumo:
Nanostructured tungsten trioxide (WO3) photoelectrodes are potential candidates for the anodic portion of an integrated solar water-splitting device that generates hydrogen fuel and oxygen from water. These nanostructured materials can potentially offer improved performance in photooxidation reactions compared to unstructured materials because of enhancements in light scattering, increases in surface area, and their decoupling of the directions of light absorption and carrier collection. To evaluate the presence of these effects and their contributions toward energy conversion efficiency, a variety of nanostructured WO3 photoanodes were synthesized by electrodeposition within nanoporous templates and by anodization of tungsten foils. A robust fabrication process was developed for the creation of oriented WO3 nanorod arrays, which allows for control nanorod diameter and length. Films of nanostructured WO3 platelets were grown via anodization, the morphology of the films was controlled by the anodization conditions, and the current-voltage performance and spectral response properties of these films were studied. The observed photocurrents were consistent with the apparent morphologies of the nanostructured arrays. Measurements of electrochemically active surface area and other physical characteristics were correlated with observed differences in absorbance, external quantum yield, and photocurrent density for the anodized arrays. The capability to quantify these characteristics and relate them to photoanode performance metrics can allow for selection of appropriate structural parameters when designing photoanodes for solar energy conversion.
Resumo:
Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O2 binding constants ~ 3x greater than those of myoglobin. The resistance of O2-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.
UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH- coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H2O heme ligation. Significant differences in the pH dependence of the 1H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.
1H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the 1H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.
Resumo:
The subject of this thesis is electronic coupling in donor-bridge-acceptor systems. In Chapter 2, ET properties of cyanide-bridged dinuclear ruthenium complexes were investigated. The strong interaction between the mixed-valent ruthenium centers leads to intense metal-to-metal charge transfer bands (MMCT). Hush analysis of the MMCT absorption bands yields the electronic-coupling strength between the metal centers (H_(AB)) and the total reorganization energy (λ). Comparison of ET kinetics to calculated rates shows that classical ET models fail to account for the observed kinetics and nuclear tunneling must be considered.
In Chapter 3, ET rates were measured in four ruthenium-modified highpotential iron-sulfur proteins (HiPIP), which were modified at position His50, His81, His42 and His18, respectively. ET kinetics for the His50 and His81 mutants are a factor of 300 different, while the donor-acceptor separation is nearly identical. PATHWAY calculations corroborate these measurements and highlight the importance of structural detail of the intervening protein matrix.
In Chapter 4, the distance dependence of ET through water bridges was measured. Photoinduced ET measurements in aqueous glasses at 77 K show that water is a poor medium for ET. Luminescence decay and quantum yield data were analyzed in the context of a quenching model that accounts for the exponential distance dependence of ET, the distance distribution of donors and acceptors embedded in the glass and the excluded volumes generated by the finite sizes of the donors and acceptors.
In Chapter 5, the pH-dependent excited state dynamics of ruthenium-modified amino acids were measured. The [Ru(bpy)_(3)] ^(2+) chromophore was linked to amino acids via an amide linkage. Protonation of the amide oxygen effectively quenches the excited state. In addition. time-resolved and steady-state luminescence data reveal that nonradiative rates are very sensitive to the protonation state and the structure of the amino acid moiety.
Resumo:
In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.
In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.
An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.
Resumo:
The effect of metal atoms on photochemical transformations has been investigated by studies of the cis-trans isomerization of β-styrylferrocene.
The photostationary state lies entirely on the side of the trans isomer in the cases of direct irradiation at 3130 Å or at 3660 Å. The quantum yield at 3130 Å is 0.00650 and does not vary with concentration. In the presence of benzophenon as sensitizer the quantum yield is 0.00540. On the other hand, the quantum yield for direct irradiation at 3660 Å decreases with increasing concentration of cis β- styrylferrocene varying from 0.00365 to 0.00198.
These results lead to the suggestion that the isomerization takes place from a triplet state of β-styrylferrocene which probably has higher energy than the lowest triplet; reaction from the third triplet seems most likely.
Resumo:
The parameters such as quantum yield and molar absorption coefficients of the photoinitiator that are responsible for holographic sensitivity in photopolymer material are investigated with a single beam exposure experiment. The influence of exposure intensity, the concentrations of N-phenylglycine and dye on the photobleaching process of xanthenes dyes are presented. In addition, the effect of diphenyliodonium hexafluorophosphate salt on the quantum yield and molar absorption of xanthene dyes is studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We report on cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses (LBG), which are capable of splitting a visible photon absorbed by Tm3+ or Pr3+ ions into two near-infrared photons. The results indicate that Pr3+-Yb3+ is a more efficient ion couple than Tm3+-Yb3+ in terms of cooperative downconversion. We have obtained a highest quantum yield of 165% and 138% for Pr3+-Yb3+ and Tm3+-Yb3+ codoped LBG glasses under 468 nm excitation, respectively. However, ultraviolet light excitation to the charge transfer band of Yb3+ does not result in quantum splitting as rapid relaxation from the charge transfer band to 4f(13) levels of Yb3+ dominates. (C) 2008 Optical Society of America
Resumo:
The construction of protein-based photoelectrochemical cells that produce a variety of alternating currents in response to discontinuous illumination is reported. The photovoltaic component is a protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides which catalyses photochemical charge separation with a high quantum yield. Photoelectrochemical cells formed from this protein, a mobile redox mediator and a counter electrode formed from cobalt disilicide, titanium nitride, platinum, or multi-walled carbon nanotubes (MWCNT) generate a direct current during continuous illumination and an alternating current with different characteristics during discontinuous illumination. In particular, the use of superhydrophobic MWCNT as the back electrode results in a near symmetrical forward and reverse current upon light on and light off, respectively. The symmetry of the AC output of these cells is correlated with the wettability of the counter electrode. Potential applications of a hybrid biological/synthetic solar cell capable of generating an approximately symmetrical alternating current are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The minor variant of the economically important cyanobacterium, Arthrospira platensis, usually appears in commercial production ponds under solar radiation. However, how sensitive the minor variant to solar UVR and whether its occurrence relates to the solar exposures are not known. We investigated the photochemical efficiency of PSII and growth rate of D-0083 strain and its minor variant in semi-continuous cultures under PAR (400-700 nm) alone, PAR + UV-A (320-400 nm) and PAR + UV-A + UV-B (280-700 nm) of solar radiation. The effective quantum yield of D-0083 at 14:00 p.m. decreased by about 86% under PAR, 87% under PAR + UV-A and 92% under PAR + UV-A + UV-B (280-315 nm), respectively. That of the minor variant was reduced by 93% under PAR and to undetectable values in the presence of UV-A or UV-A + UV-B. Diurnal change of the yield showed constant pattern during long-term (10 days) exposures, high in the early morning and late afternoon but the lowest at noontime in both strains, with the UVR-related inhibition being always higher in the variant than D-0083. During the long-term exposures, cells of D-0083 acclimated faster to solar UV radiation and showed paralleled growth rates among the treatments with or without UVR at the end of the experiment; however, growth of the minor variant was significantly reduced by UV-A and UV-B throughout the period. Comparing to the major strain D-0083, the minor variant was more sensitive to UVR in terms of its growth, quantum yield and acclimation to solar radiation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.
Resumo:
1. The importance of vertical mixing in modulating the impact of UVR on phytoplankton photosynthesis was assessed in a tropical, shallow lake in southern China from late winter to mid-spring of 2005. 2. Daily cycles of fluorescence measurements (i.e. photosynthetic quantum yield, Y) were performed on both 'static' and in situ samples. Static samples were of surface water incubated at the surface of the lake under three radiation treatments - PAB (PAR + UVR, 280-700 nm), PA (PAR + UV-A, 320-700 nm) and P (PAR, 400-700 nm). In situ samples were collected every hour at three different depths - 0, 0.5 and 1 m. 3. The general daily pattern was of a significant decrease in Y from early morning towards noon, with partial recovery in the afternoon. Samples incubated under static conditions always had lower Y than those under in situ conditions at the same time of the day. 4. Under stratified conditions, no overall impact of UVR impact could be detected in situ when compared with the static samples. Further rapid vertical mixing not only counteracted the impact of UVR but also stimulated photosynthetic efficiency. 5. Based on these measurements of fluorescence, the mixing speed of cells moving within the epilimnion was estimated to range between 0.53 and 6.5 cm min(-1). 6. These data show that mixing is very important in modulating the photosynthetic response of phytoplankton exposed to natural radiation and, hence, strongly conditions the overall impact of UVR on aquatic ecosystems.
Resumo:
In order to assess the short- and long-term impacts of UV radiation (LTVR, 280-400 nm) on the red tide alga, Heterosigma akashiwo, we exposed the cells to three different solar radiation treatments (PAB: 280-700 rim, PA: 320-700 nm, R 400-700 nm) under both solar and artificial radiation. A significant decrease in the effective quantum yield () during high irradiance periods (i.e., local noon) was observed, but the cells partially recovered during the evening hours. Exposure to high irradiances for 15, 30, and 60 min under a solar simulator followed by the recovery (8 h) under dark, 9 and 100 mu mol photons m(-2) s(-1) of PAR, highlighted the importance of the irradiance level during the recovery period. Regardless the radiation treatments, the highest recovery (both in rate and total Y) was found at a PAR irradiance of 9 mu mol photons m(-2) s(-1), while the lowest was observed at 100 mu mol photons m(-2) s(-1). In all experiments, PAR was responsible for most of the observed inhibition; nevertheless, the cells exposed only to PAR had the highest recovery in any condition, as compared to the other radiation treatments. In long-term experiments (10 days) using semi-continuous cultures, there was a significant increase of UV-absorbing compounds (UVabc) per cell from 1.2 to > 4 x 10(-6) mu g UVabc cell(-1) during the first 3-5 days of exposure to solar radiation. The highest concentration of UVabc was found in samples exposed in the PAB as compared to PA and P treatments. Growth rates (mu) mimic the behavior of UV-absorbing compounds, and during the first 5 days mu increased from < 0.2 to ca. 0.8, and stayed relatively constant at this value during the rest of the experiment. The inhibition of the Y decreased with increasing acclimation of cells. All our data indicates that H. akashiwo is a sensitive species, but was able acclimate relatively fast (3-5 days) synthesizing UV-absorbing compounds and thus reducing any impact either on photosystem 11 or on growth. (c) 2006 Published by Elsevier B.V.
Resumo:
The photocurrent curves of reflection-mode GaAs photocathodes as a function of time, when were illuminated by white light with an intensity of 0, 33 and 100 Ix, respectively, were measured using a multi-information measurement system. The calculated lifetimes of cathodes are 320, 160 and 75 min, respectively, showing that the stability of cathodes degraded with the increase of light intensity. The lifetime of cathode, illuminated by white light with an intensity of 100 Ix, while no photocurrent was being drawn during the illumination, was 100 min. Through comparison, we found that the influence of illumination on cathodes stability is greater than that of photocurrent. The quantum-yield curves of cathodes as a functions of time, when illuminated by white light with an intensity of 33 Ix, were measured also. The measured results show that the shape of the yield curves changes with increasing illumination time due to the faster quantum-yield degradation rate of low energy photons. Based on the revised quantum-efficiency equations for the reflection-mode cathodes, the variation of yield curves are analyzed to be due to the intervalley diffusion of photoelectrons and the evolution of the surface potential barrier profile of the photocathodes during degradation process.
Resumo:
在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.