956 resultados para quantitative trait


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Problématique: L’hypertension artérielle essentielle, facteur de risque majeur dans le développement des maladies cardiovasculaires, est un trait multigénique complexe dont les connaissances sur le déterminisme génétique nécessitent d’être approfondies. De nombreux loci à trait quantitatif (QTLs); soit des gènes responsables de faire varier la pression artérielle (PA), ont été identifiés chez l’humain et le modèle animal. Cependant, le mystère plane encore sur la façon dont ces gènes fonctionnent ensemble pour réguler la PA. Hypothèse et objectif: Plutôt qu’une addition de QTLs ayant chacun une action infinitésimale sur la PA, une interaction épistatique entre les gènes serait responsable du phénotype hypertendu. Ainsi, l’étude de cette épistasie entre les gènes impliqués, directement ou indirectement, dans l’homéostasie de la PA nous permettrait d’explorer de nouvelles voies de régulation moléculaire en cause dans cette maladie. Méthodes: Via la réalisation de souches congéniques de rats, où un segment chromosomique provenant d’une souche receveuse hypertendue (Dahl Salt Sensitive, SS/Jr) est remplacé par son homologue provenant d’une souche donneuse normotendue (Lewis, LEW), des QTLs peuvent être mis en évidence. Dans ce contexte, la combinaison de QTLs via la création de doubles ou multiples congéniques constitue la première démonstration fonctionnelle des interactions intergéniques. Résultats: Vingt-sept combinaisons au total nous ont menés à l’appréciation d’une modularisation des QTLs. Ces derniers ont été catégorisés selon deux principaux modules épistatiques (EMs) où les QTLs appartenant à un même EM sont épistatiques entre eux et participent à une même voie régulatrice. Les EMs/cascades agissent alors en parallèle pour réguler la PA. Grâce à l’existence de QTLs ayant des effets opposés sur la PA, nous avons pu établir l’ordre hiérarchique entre trois paires de QTLs. Cependant, lorsque cette suite régulatrice ne peut être déterminée, d’autres approches sont nécessaires. Nos travaux nous ont mené à l’identification d’un QTL situé sur le chromosome 16 du rat (C16QTL), appartenant au EM1 et qui révélerait une nouvelle voie de l’homéostasie de la PA. Le gène retinoblastoma-associated protein 140 (Rap140)/family with sequence similarity 208 member A (Fam208a), présentant une mutation non synonyme entre SS/Jr et LEW est le gène candidat le plus plausible pour représenter C16QTL. Celui-ci code pour un facteur de transcription et semblerait influencer l’expression de Solute carrier family 7 (cationic amino acid transporter, y+ system) member 12 (Slc7a12), spécifiquement et significativement sous exprimé dans les reins de la souche congénique portant C16QTL par rapport à la souche SS/Jr. Rap140/Fam208a agirait comme un inhibiteur de la transcription de Slc7a12 menant à une diminution de la pression chez Lewis. Conclusions: L’architecture complexe de la régulation de la PA se dévoile mettant en scène de nouveaux acteurs, pour la plupart inconnus pour leur implication dans la PA. L’étude de la nouvelle voie de signalisation Rap140/Fam208a - Slc7a12 nous permettra d’approfondir nos connaissances quant à l’homéostasie de la pression artérielle et de l’hypertension chez SS/Jr. À long terme, de nouveaux traitements anti-hypertenseurs, ciblant plus d’une voie de régulation à la fois, pourraient voir le jour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drought during grain filling is a common challenge for sorghum production in north-eastern Australia, central-western India, and sub-Saharan Africa. We show that the stay-green drought adaptation trait enhances sorghum grain yield under post-anthesis drought in these three regions. A positive relationship between stay-green and yield was generally found in breeding trials in north-eastern Australia that sampled 1668 unique hybrid combinations and 23 environments. Physiological studies in Australia also found that introgressing four individual stay-green (Stg1–4) quantitative trait loci (QTLs) into a senescent background reduced water demand before flowering and hence increased water supply during grain filling, resulting in higher grain yield relative to the senescent control. Studies in India found that various Stg QTLs affected both transpiration and transpiration efficiency, although these effects depended on the interaction between genetic background (S35 and R16) and individual QTLs. The yield variation unexplained by harvest index was related to transpiration efficiency in S35 (R2 = 0.29) and R16 (R2 = 0.72), and was related to total water extracted in S35 (R2 = 0.41) but not in R16. Finally, sixty-eight stay-green enriched lines were evaluated in six countries in sub-Saharan Africa during the 2013/14 season. Analysis of the data from Kenya indicates that stay-green and grain size were positively correlated at two sites: Kiboko (high yielding, r2=0.25) and Masongaleni (low yielding, r2=0.37). Together, these studies suggest that stay-green is a beneficial trait for sorghum production in the semi-arid tropics and is a consequence of traits altering the plant water budget.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Intensified selection of polled individuals has recently gained importance in predominantly horned dairy cattle breeds as an alternative to routine dehorning. The status quo of the current polled breeding pool of genetically-closely related artificial insemination sires with lower breeding values for performance traits raises questions regarding the effects of intensified selection based on this founder pool. Methods: We developed a stochastic simulation framework that combines the stochastic simulation software QMSim and a self-designed R program named QUALsim that acts as an external extension. Two traits were simulated in a dairy cattle population for 25 generations: one quantitative (QMSim) and one qualitative trait with Mendelian inheritance (i.e. polledness, QUALsim). The assignment scheme for qualitative trait genotypes initiated realistic initial breeding situations regarding allele frequencies, true breeding values for the quantitative trait and genetic relatedness. Intensified selection for polled cattle was achieved using an approach that weights estimated breeding values in the animal best linear unbiased prediction model for the quantitative trait depending on genotypes or phenotypes for the polled trait with a user-defined weighting factor. Results: Selection response for the polled trait was highest in the selection scheme based on genotypes. Selection based on phenotypes led to significantly lower allele frequencies for polled. The male selection path played a significantly greater role for a fast dissemination of polled alleles compared to female selection strategies. Fixation of the polled allele implies selection based on polled genotypes among males. In comparison to a base breeding scenario that does not take polledness into account, intensive selection for polled substantially reduced genetic gain for this quantitative trait after 25 generations. Reducing selection intensity for polled males while maintaining strong selection intensity among females, simultaneously decreased losses in genetic gain and achieved a final allele frequency of 0.93 for polled. Conclusions: A fast transition to a completely polled population through intensified selection for polled was in contradiction to the preservation of high genetic gain for the quantitative trait. Selection on male polled genotypes with moderate weighting, and selection on female polled phenotypes with high weighting, could be a suitable compromise regarding all important breeding aspects.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28 % across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear. © 2010 Freyer et al., licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivation: Unravelling the genetic architecture of complex traits requires large amounts of data, sophisticated models and large computational resources. The lack of user-friendly software incorporating all these requisites is delaying progress in the analysis of complex traits. Methods: Linkage disequilibrium and linkage analysis (LDLA) is a high-resolution gene mapping approach based on sophisticated mixed linear models, applicable to any population structure. LDLA can use population history information in addition to pedigree and molecular markers to decompose traits into genetic components. Analyses are distributed in parallel over a large public grid of computers in the UK. Results: We have proven the performance of LDLA with analyses of simulated data. There are real gains in statistical power to detect quantitative trait loci when using historical information compared with traditional linkage analysis. Moreover, the use of a grid of computers significantly increases computational speed, hence allowing analyses that would have been prohibitive on a single computer. © The Author 2009. Published by Oxford University Press. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have enabled exact prediction of probabilities of identity-by-descent (IBD) in randommating populations for a few loci (up to four or so), with extension to more using approximate regression methods. Here we present a precise predictor of multiple-locus IBD using simple formulas based on exact results for two loci. In particular, the probability of non-IBD X ABC at each of ordered loci A, B, and C can be well approximated by XABC = XABXBC/XB and generalizes to X123. . .k = X12X23. . .Xk-1,k/ Xk-2, where X is the probability of non-IBD at each locus. Predictions from this chain rule are very precise with population bottlenecks and migration, but are rather poorer in the presence of mutation. From these coefficients, the probabilities of multilocus IBD and non-IBD can also be computed for genomic regions as functions of population size, time, and map distances. An approximate but simple recurrence formula is also developed, which generally is less accurate than the chain rule but is more robust with mutation. Used together with the chain rule it leads to explicit equations for non-IBD in a region. The results can be applied to detection of quantitative trait loci (QTL) by computing the probability of IBD at candidate loci in terms of identity-by-state at neighboring markers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power of testing for a population-wide association between a biallelic quantitative trait locus and a linked biallelic marker locus is predicted both empirically and deterministically for several tests. The tests were based on the analysis of variance (ANOVA) and on a number of transmission disequilibrium tests (TDT). Deterministic power predictions made use of family information, and were functions of population parameters including linkage disequilibrium, allele frequencies, and recombination rate. Deterministic power predictions were very close to the empirical power from simulations in all scenarios considered in this study. The different TDTs had very similar power, intermediate between one-way and nested ANOVAs. One-way ANOVA was the only test that was not robust against spurious disequilibrium. Our general framework for predicting power deterministically can be used to predict power in other association tests. Deterministic power calculations are a powerful tool for researchers to plan and evaluate experiments and obviate the need for elaborate simulation studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global aquaculture has expanded rapidly to address the increasing demand for aquatic protein needs and an uncertain future for wild fisheries. To date, however, most farmed aquatic stocks are essentially wild and little is known about their genomes or the genes that affect important economic traits in culture. Biologists have recognized that recent technological advances including next generation sequencing (NGS) have opened up the possibility of generating genome wide sequence data sets rapidly from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', understanding gene function and genetic effects on expressed quantitative trait locus phenotypes will be fundamental to future knowledge development. Many factors can influence the individual growth rate in target species but of particular importance in agriculture and aquaculture will be the identification and characterization of the specific gene loci that contribute important phenotypic variation to growth because the information can be applied to speed up genetic improvement programmes and to increase productivity via marker-assisted selection (MAS). While currently there is only limited genomic information available for any crustacean species, a number of putative candidate genes have been identified or implicated in growth and muscle development in some species. In an effort to stimulate increased research on the identification of growth-related genes in crustacean species, here we review the available information on: (i) associations between genes and growth reported in crustaceans, (ii) growth-related genes involved with moulting, (iii) muscle development and degradation genes involved in moulting, and; (iv) correlations between DNA sequences that have confirmed growth trait effects in farmed animal species used in terrestrial agriculture and related sequences in crustacean species. The information in concert can provide a foundation for increasing the rate at which knowledge about key genes affecting growth traits in crustacean species is gained.