870 resultados para purchase confidence
Resumo:
Time, risk, and attention are all integral to economic decision making. The aim of this work is to understand those key components of decision making using a variety of approaches: providing axiomatic characterizations to investigate time discounting, generating measures of visual attention to infer consumers' intentions, and examining data from unique field settings.
Chapter 2, co-authored with Federico Echenique and Kota Saito, presents the first revealed-preference characterizations of exponentially-discounted utility model and its generalizations. My characterizations provide non-parametric revealed-preference tests. I apply the tests to data from a recent experiment, and find that the axiomatization delivers new insights on a dataset that had been analyzed by traditional parametric methods.
Chapter 3, co-authored with Min Jeong Kang and Colin Camerer, investigates whether "pre-choice" measures of visual attention improve in prediction of consumers' purchase intentions. We measure participants' visual attention using eyetracking or mousetracking while they make hypothetical as well as real purchase decisions. I find that different patterns of visual attention are associated with hypothetical and real decisions. I then demonstrate that including information on visual attention improves prediction of purchase decisions when attention is measured with mousetracking.
Chapter 4 investigates individuals' attitudes towards risk in a high-stakes environment using data from a TV game show, Jeopardy!. I first quantify players' subjective beliefs about answering questions correctly. Using those beliefs in estimation, I find that the representative player is risk averse. I then find that trailing players tend to wager more than "folk" strategies that are known among the community of contestants and fans, and this tendency is related to their confidence. I also find gender differences: male players take more risk than female players, and even more so when they are competing against two other male players.
Chapter 5, co-authored with Colin Camerer, investigates the dynamics of the favorite-longshot bias (FLB) using data on horse race betting from an online exchange that allows bettors to trade "in-play." I find that probabilistic forecasts implied by market prices before start of the races are well-calibrated, but the degree of FLB increases significantly as the events approach toward the end.
Resumo:
[EN] Store brands account for and important market share in the Spain and a further increase in expected in the next years due to the downturn. However, there is lack of research on store brand customer-based Brand Equity. This study attempts to propose an integrated model of Brand Equity in store or retailer brands, based on Aaker s well-known conceptual model. We propose a consumer-based model, including the main sources or dimensions of Brand Equity and considering the intention to purchase as a consequence. Based on a sample of 362 consumers and 5 store brands, structural equation modeling is used to test research hypotheses. The results obtained reveal that store brand awareness, loyalty along with store brand perceived quality have a significant influence on consumers intention to purchase store brands. Our study suggests that marketers and marketing managers from retailing companies should carefully consider the Brand Equity components when designing their brand strategies, and develop marketing activities in order to enhance their brands awareness.
Resumo:
World Conference on Psychology and Sociology 2012
Resumo:
The Government of Sri Lanka is improving off-shore and deep-shore fishing by introducing more sophisticated and larger vessels into the Sri Lanka waters, together with the offer of subsidies, tax holidays and other concessions to those who seek to operate such fishing vessels. As a first step, some thirty 38 foot class fishing vessels are to be introduced. The requisite variety and quantity of fishing gear is supplied together with the vessels, and operators will be given further assistance to either export or market their catches locally by provision of insulated fish transport vans, jeeps with trailers, crushed ice plants, fish storage cabinets and adequate spares for at least the next few years. A description is given of the credit terms offered for the purchase of such vessels, pre-shipment finance, and loans and hire purchase facilities.
Resumo:
Innovation is a critical factor in ensuring commercial success within the area of medical technology. Biotechnology and Healthcare developments require huge financial and resource investment, in-depth research and clinical trials. Consequently, these developments involve a complex multidisciplinary structure, which is inherently full of risks and uncertainty. In this context, early technology assessment and 'proof of concept' is often sporadic and unstructured. Existing methodologies for managing the feasibility stage of medical device development are predominantly suited to the later phases of development and favour detail in optimisation, validation and regulatory approval. During these early phases, feasibility studies are normally conducted to establish whether technology is potentially viable. However, it is not clear how this technology viability is currently measured. This paper aims to redress this gap through the development of a technology confidence scale, as appropriate explicitly to the feasibility phase of medical device design. These guidelines were developed from analysis of three recent innovation studies within the medical device industry.
Resumo:
Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.
Resumo:
Psychological factors play a major role in exacerbating chronic pain. Effective self-management of pain is often hindered by inaccurate beliefs about the nature of pain which lead to a high degree of emotional reactivity. Probabilistic models of perception state that greater confidence (certainty) in beliefs increases their influence on perception and behavior. In this study, we treat confidence as a metacognitive process dissociable from the content of belief. We hypothesized that confidence is associated with anticipatory activation of areas of the pain matrix involved with top-down modulation of pain. Healthy volunteers rated their beliefs about the emotional distress that experimental pain would cause, and separately rated their level of confidence in this belief. Confidence predicted the influence of anticipation cues on experienced pain. We measured brain activity during anticipation of pain using high-density EEG and used electromagnetic tomography to determine neural substrates of this effect. Confidence correlated with activity in right anterior insula, posterior midcingulate and inferior parietal cortices during the anticipation of pain. Activity in the right anterior insula predicted a greater influence of anticipation cues on pain perception, whereas activity in right inferior parietal cortex predicted a decreased influence of anticipatory cues. The results support probabilistic models of pain perception and suggest that confidence in beliefs is an important determinant of expectancy effects on pain perception.
Resumo:
We report an empirical study of n-gram posterior probability confidence measures for statistical machine translation (SMT). We first describe an efficient and practical algorithm for rapidly computing n-gram posterior probabilities from large translation word lattices. These probabilities are shown to be a good predictor of whether or not the n-gram is found in human reference translations, motivating their use as a confidence measure for SMT. Comprehensive n-gram precision and word coverage measurements are presented for a variety of different language pairs, domains and conditions. We analyze the effect on reference precision of using single or multiple references, and compare the precision of posteriors computed from k-best lists to those computed over the full evidence space of the lattice. We also demonstrate improved confidence by combining multiple lattices in a multi-source translation framework. © 2012 The Author(s).