999 resultados para proton drip line


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manual calibration of large and dynamic networks of cameras is labour intensive and time consuming. This is a strong motivator for the development of automatic calibration methods. Automatic calibration relies on the ability to find correspondences between multiple views of the same scene. If the cameras are sparsely placed, this can be a very difficult task. This PhD project focuses on the further development of uncalibrated wide baseline matching techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring social and environmental metrics of property is necessary for meaningful triple bottom line (TBL) assessments. This paper demonstrates how relevant indicators derived from environmental rating systems provide for reasonably straightforward collations of performance scores that support adjustments based on a sliding scale. It also highlights the absence of a corresponding consensus of important social metrics representing the third leg of the TBL tripod. Assessing TBL may be unavoidably imprecise, but if valuers and managers continue to ignore TBL concerns, their assessments may soon be less relevant given the emerging institutional milieu informing and reflecting business practices and society expectations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objects have consequences, seemingly. They move, atomic, formlessly – when static they are seen. That they vibrate constantly, that they are NOW present, is something we will have to trust the physicists on. They only seem here. Now is their moment of form, but later, who knows? Things SEEM when we recognise our own transience and temporary-ness. We call upon a bevy of senses that forever frustrate us with their limitation, despite our little understanding of what we actually have – is this here? So some forms seem to be telling us to trust our senses – that this world IS as it seems. Their form constantly refines and is refined and refined until in its essentialness it cannot be doubted – it absolutely IS. Is this our eyes? Can we only see it? But light is also a particle, if I remember correctly, so there is some weight to seeing. So to SEEM is also to FEEL,as this light imposes its visual weight upon our skins – we see with every pore of our body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.