965 resultados para protein kinase B (PKB)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase (ERK) 1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191 +/- 3 mm Hg) compared with female DOCA rats (172 +/- 7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22 +/- 3 mN; n=6) and small mesenteric arteries (13 +/- 2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16 +/- 3 and 10 +/- 2 mN, respectively; P<0.05) and female DOCA rats (15 +/- 1 and 11 +/- 1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 mu mol/L) abrogated increased contraction to phenylephrine in aorta (14 +/- 2 mN) and small mesenteric arteries (10 +/- 2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process. (Hypertension. 2010; 55: 172-179.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Backgroundb><br />AMP-activated protein kinase (AMPK) has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation.<br /><br /><b>Resultsb><br />This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, &beta; and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research.<br /><br /><b>Conclusionb><br />Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AMP-activated protein kinase (AMPK) acts as a metabolic master switch regulating several intracellular systems. The effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. With increasingly available AMPK regulation data, it is critical to develop an efficient way to analyze the data since this assists in further understanding AMPK pathways. Bayesian networks can play an important role in expressing the dependency and causality in the data. This paper aims to analyse the regulation data using B-Course, a powerful analysis tool to exploit several theoretically elaborate results in the fields of Bayesian and causal modelling, and discover a certain type of multivariate probabilistic dependencies. The identified dependency models are easier to understand in comparison with the traditional frequent patterns. <br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Background:b> Members of the protein kinase C (PKC) family are key signalling mediators in immune responses, and pharmacological inhibition of PKCs may be useful for treating immune-mediated diseases. <b>Objective: b>To review and discuss the insights gained so far into various PKC isozymes and the therapeutic potential and challenges of developing PKC inhibitors for immune disorder therapy. <b>Methods:b> A literature review of the role of PKCs in immune cell signalling and recent studies describing immune functions associated with PKC isozyme deficiency in relevant mouse disease models, followed by specific case studies of current and potential therapeutic strategies targeting PKCs. <b>Results/conclusion:b> There is vast amount of data supporting PKC isozymes as attractive drug targets for certain immune disorders. Although the development of specific PKC isozyme inhibitors has been challenging, some progress has been made. It remains to be seen if broad-scale or isozyme-selective inhibition of PKC will have clinical efficacy.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Objectiveb>: Insulin resistance associated with obesity and diabetes is ameliorated by specific overexpression of GLUT4 in skeletal muscle. The molecular mechanisms regulating skeletal muscle GLUT4 expression remain to be elucidated. The purpose of this study was to examine these mechanisms.<br /><br /><b>Research Design and Methods and Resultsb>: Here, we report that AMP-activated protein kinase (AMPK) regulates GLUT4 transcription through the histone deacetylase (HDAC)5 transcriptional repressor. Overexpression of HDAC5 represses GLUT4 reporter gene expression, and HDAC inhibition in human primary myotubes increases endogenous GLUT4 gene expression. In vitro kinase assays, site-directed mutagenesis, and site-specific phospho-antibodies establish AMPK as an HDAC5 kinase that targets S259 and S498. Constitutively active but not dominant-negative AMPK and 5-aminoimidazole-4-carboxamide-1-&beta;-d-ribonucleoside (AICAR) treatment in human primary myotubes results in HDAC5 phosphorylation at S259 and S498, association with 14-3-3 isoforms, and H3 acetylation. This reduces HDAC5 association with the GLUT4 promoter, as assessed through chromatin immunoprecipitation assays and HDAC5 nuclear export, concomitant with increases in GLUT4 gene expression. Gene reporter assays also confirm that the HDAC5 S259 and S498 sites are required for AICAR induction of GLUT4 transcription.<br /><br /><b>Conclusionsb>: These data reveal a signal transduction pathway linking cellular energy charge to gene transcription directed at restoring cellular and whole-body energy balance and provide new therapeutic targets for the treatment and management of insulin resistance and type 2 diabetes. <br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fencamfamine (FCF) is an indirect dopamine agent with effects similar to amphetamine and cocaine. In the present study, we investigate changes in Na,K-ATPase, cyclic AMP-dependent protein kinase (PKA) and nitric oxide synthase (NOS) activity and cyclic GMP levels in the nucleus accumbens (NAc) and striatum (ST) of animals acutely or repeatedly treated with FCF (3.5 mg/kg). Na,K-ATPase had a similar activity in control and repeatedly treated animals, but was reduced in the NAc of the acute group. This enzyme was reduced in the ST in acute and repeatedly treated animals, compared to the control group. Expression of the alpha(1,2,3)-Na,K-ATPase isoforms in the NAc and the ST was not altered in all groups studied. Acute FCF induced a significant increase in PKA activity in both the ST and the NAc. Repeatedly treated animals showed a higher increase in PKA activity in the NAc, but not in the ST, when compared to the acute group. There was also an increase in both NOS activity and cyclic GMP levels only in the NAc of FCF repeatedly treated animals compared to the acute and control groups. We suggest that chronic FCF treatment is linked to a modification in Na,K-ATPase activity through the PKA and NO-cyclic GMP pathway. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stressful experiences appear to have a strong influence on susceptibility to drug taking behavior. Cross-sensitization between stress and drug-induced locomotor response has been found. Locomotor response to novelty or cocaine (10 mg/kg, i.p.), cyclic AMP-dependent protein kinase (PKA) activity in the nucleus accumbens and basal corticosterone levels were evaluated in male adult rats exposed to acute and chronic predictable or unpredictable stress. Rats exposed to a 14-day predictable stress showed increased locomotor response to novelty and to cocaine, whereas rats exposed to chronic unpredictable stress demonstrated increased cyclic AMP-dependent PKA activity in the nucleus accumbens. Both predictable and unpredictable stress increased basal corticosterone plasma levels. These experiments demonstrated that stress-induced early cocaine sensitization depends on the stress regime and is apparently dissociated from stress-induced changes in cyclic AMP-dependent PKA activity and corticosterone levels. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)