942 resultados para protein aggregation and neurofilament
Resumo:
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.
Resumo:
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Resumo:
We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.
Resumo:
Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
CONTEXT: Plasma levels of C-reactive protein (CRP) are independently associated with risk of coronary heart disease, but whether CRP is causally associated with coronary heart disease or merely a marker of underlying atherosclerosis is uncertain. OBJECTIVE: To investigate association of genetic loci with CRP levels and risk of coronary heart disease. DESIGN, SETTING, AND PARTICIPANTS: We first carried out a genome-wide association (n = 17,967) and replication study (n = 13,615) to identify genetic loci associated with plasma CRP concentrations. Data collection took place between 1989 and 2008 and genotyping between 2003 and 2008. We carried out a mendelian randomization study of the most closely associated single-nucleotide polymorphism (SNP) in the CRP locus and published data on other CRP variants involving a total of 28,112 cases and 100,823 controls, to investigate the association of CRP variants with coronary heart disease. We compared our finding with that predicted from meta-analysis of observational studies of CRP levels and risk of coronary heart disease. For the other loci associated with CRP levels, we selected the most closely associated SNP for testing against coronary heart disease among 14,365 cases and 32,069 controls. MAIN OUTCOME MEASURE: Risk of coronary heart disease. RESULTS: Polymorphisms in 5 genetic loci were strongly associated with CRP levels (% difference per minor allele): SNP rs6700896 in LEPR (-14.8%; 95% confidence interval [CI], -17.6% to -12.0%; P = 6.2 x 10(-22)), rs4537545 in IL6R (-11.5%; 95% CI, -14.4% to -8.5%; P = 1.3 x 10(-12)), rs7553007 in the CRP locus (-20.7%; 95% CI, -23.4% to -17.9%; P = 1.3 x 10(-38)), rs1183910 in HNF1A (-13.8%; 95% CI, -16.6% to -10.9%; P = 1.9 x 10(-18)), and rs4420638 in APOE-CI-CII (-21.8%; 95% CI, -25.3% to -18.1%; P = 8.1 x 10(-26)). Association of SNP rs7553007 in the CRP locus with coronary heart disease gave an odds ratio (OR) of 0.98 (95% CI, 0.94 to 1.01) per 20% lower CRP level. Our mendelian randomization study of variants in the CRP locus showed no association with coronary heart disease: OR, 1.00; 95% CI, 0.97 to 1.02; per 20% lower CRP level, compared with OR, 0.94; 95% CI, 0.94 to 0.95; predicted from meta-analysis of the observational studies of CRP levels and coronary heart disease (z score, -3.45; P < .001). SNPs rs6700896 in LEPR (OR, 1.06; 95% CI, 1.02 to 1.09; per minor allele), rs4537545 in IL6R (OR, 0.94; 95% CI, 0.91 to 0.97), and rs4420638 in the APOE-CI-CII cluster (OR, 1.16; 95% CI, 1.12 to 1.21) were all associated with risk of coronary heart disease. CONCLUSION: The lack of concordance between the effect on coronary heart disease risk of CRP genotypes and CRP levels argues against a causal association of CRP with coronary heart disease.
Resumo:
Intracellular membrane fusion proceeds via distinct stages of membrane docking, hemifusion and fusion pore opening and depends on interacting families of Rab, SNARE and SM proteins. Trans-SNARE complexes dock the membranes in close apposition. Efficient fusion requires further SNARE-associated proteins. They might increase the number of trans-SNARE complexes or the fusogenic potential of a single SNARE complex. We investigated the contributions of the SM protein Vps33 to hemifusion and pore opening between yeast vacuoles. Mutations in Vps33 that weaken its interactions with the SNARE complex allowed normal trans-SNARE pairing and lipid mixing but retarded content mixing. Deleting the H(abc) domain of the vacuolar t-SNARE Vam3, which interacts with Vps33, had the same effect. This suggests that SM proteins promote fusion pore opening by enhancing the fusogenic activity of a SNARE complex. They should thus be considered integral parts of the fusion machinery.
Resumo:
Il est important pour les entreprises de compresser les informations détaillées dans des sets d'information plus compréhensibles. Au chapitre 1, je résume et structure la littérature sur le sujet « agrégation d'informations » en contrôle de gestion. Je récapitule l'analyse coûts-bénéfices que les comptables internes doivent considérer quand ils décident des niveaux optimaux d'agrégation d'informations. Au-delà de la perspective fondamentale du contenu d'information, les entreprises doivent aussi prendre en considération des perspectives cogni- tives et comportementales. Je développe ces aspects en faisant la part entre la comptabilité analytique, les budgets et plans, et la mesure de la performance. Au chapitre 2, je focalise sur un biais spécifique qui se crée lorsque les informations incertaines sont agrégées. Pour les budgets et plans, des entreprises doivent estimer les espérances des coûts et des durées des projets, car l'espérance est la seule mesure de tendance centrale qui est linéaire. A la différence de l'espérance, des mesures comme le mode ou la médiane ne peuvent pas être simplement additionnés. En considérant la forme spécifique de distributions des coûts et des durées, l'addition des modes ou des médianes résultera en une sous-estimation. Par le biais de deux expériences, je remarque que les participants tendent à estimer le mode au lieu de l'espérance résultant en une distorsion énorme de l'estimati¬on des coûts et des durées des projets. Je présente également une stratégie afin d'atténuer partiellement ce biais. Au chapitre 3, j'effectue une étude expérimentale pour comparer deux approches d'esti¬mation du temps qui sont utilisées en comptabilité analytique, spécifiquement « coûts basés sur les activités (ABC) traditionnelles » et « time driven ABC » (TD-ABC). Au contraire des affirmations soutenues par les défenseurs de l'approche TD-ABC, je constate que cette dernière n'est pas nécessairement appropriée pour les calculs de capacité. Par contre, je démontre que le TD-ABC est plus approprié pour les allocations de coûts que l'approche ABC traditionnelle. - It is essential for organizations to compress detailed sets of information into more comprehensi¬ve sets, thereby, establishing sharp data compression and good decision-making. In chapter 1, I review and structure the literature on information aggregation in management accounting research. I outline the cost-benefit trade-off that management accountants need to consider when they decide on the optimal levels of information aggregation. Beyond the fundamental information content perspective, organizations also have to account for cognitive and behavi¬oral perspectives. I elaborate on these aspects differentiating between research in cost accounti¬ng, budgeting and planning, and performance measurement. In chapter 2, I focus on a specific bias that arises when probabilistic information is aggregated. In budgeting and planning, for example, organizations need to estimate mean costs and durations of projects, as the mean is the only measure of central tendency that is linear. Different from the mean, measures such as the mode or median cannot simply be added up. Given the specific shape of cost and duration distributions, estimating mode or median values will result in underestimations of total project costs and durations. In two experiments, I find that participants tend to estimate mode values rather than mean values resulting in large distortions of estimates for total project costs and durations. I also provide a strategy that partly mitigates this bias. In the third chapter, I conduct an experimental study to compare two approaches to time estimation for cost accounting, i.e., traditional activity-based costing (ABC) and time-driven ABC (TD-ABC). Contrary to claims made by proponents of TD-ABC, I find that TD-ABC is not necessarily suitable for capacity computations. However, I also provide evidence that TD-ABC seems better suitable for cost allocations than traditional ABC.
Resumo:
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1 Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1 cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised.
Resumo:
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
Resumo:
To explore the changes in resting energy expenditure (REE) and whole body protein turnover induced by malaria, 23 children aged 6 to 14 y (23.9 +/- 1.0 kg, 1.3 +/- 0.02 m) were studied on three separate days after treatment (d 1, d 2, and 15 d later). REE was assessed by indirect calorimetry (hood), whereas whole body protein turnover was estimated using a single dose of [15N]glycine administered p.o. by measuring the isotopic enrichment of [15N]ammonia in urine over 12 h. Within the first 3.5 h after treatment, the body temperature dropped from 39.8 +/- 0.1 to 37.8 +/- 0.1 degrees C (p < 0.0001), and REE followed the same pattern, decreasing rapidly from 223 +/- 6 to 187 +/- 4 kJ/kg/d (p < 0.0001). Whole body protein synthesis and breakdown were significantly higher during the 1st day (5.65 +/- 0.38 and 6.21 +/- 0.43 g/kg/d, respectively) than at d 15 (2.95 +/- 0.17 and 2.77 +/- 0.2 g/kg/d). It is concluded that Gambian children suffering from an acute episode of malaria have an increased REE averaging 37% of the control value (d 15) and that this was associated with a substantial increase (by a factor of 2) in whole body protein turnover. A rapid normalization of the hypermetabolism and protein hypercatabolism states after treatment was observed.
Resumo:
At mucosal surfaces, we must co-exist with a high density of diverse microorganisms; therefore, protection against these occurs on multiple levels. Leukocyte- and epithelial derived-antimicrobial peptides and proteins (AMPs) comprise an essential component of immune defense. These molecules possess antibacterial, antifungal and signalling properties and probably contribute to defence and maintenance of homeostasis between the host and commensal microorganisms. Among these AMPs is bactericidal/permeability-increasing protein (BPI), an antimicrobial protein with potent endotoxin-neutralising activity, and several homologs. This review explores the roles of BPI and and its homologs at the mucosal interface. Congeners of BPI are under biopharmaceutical development as novel anti-infective agents, highlighting the potential therapeutic relevance of this protein family.
Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men.
Resumo:
The rates of energy expenditure and wholebody protein turnover were determined during a 9-h period in a group of seven men while they received hourly isocaloric meals of high-protein (HP) or high-carbohydrate (HC) content. Their responses to feeding were compared with those to a short period of fasting (15-24 h). The 9-h thermic response to the repeated feeding of HP meals was found to be greater than that to the HC meals (9.6 +/- 0.6% vs 5.7 +/- 0.4% of the energy intake, respectively, means +/- SEM, p less than 0.01). The rate of whole-body nitrogen turnover over 9 h increased from 17.6 +/- 2.2 g on the fasting day to 27.4 +/- 1.4 g during HC feeding (NS) and there was a further increase to 58.2 +/- 5.3 g resulting from HP feeding (p less than 0.001). By using theoretical estimates (based upon ATP requirements) of the metabolic cost of protein synthesis, 36 +/- 9% of the thermic response to HC feeding and 68 +/- 3% of the response to HP feeding could be accounted for by the increases in protein synthesis compared with the fasting state.
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.