918 resultados para protective immunity
Resumo:
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to similar to 1 million deaths and similar to 100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria; chondroitin sulphate-A attachment and infected erythrocyte sequestration related to pregnancy-associated malaria and other severe forms of disease. An endothelial cell high activity binding peptide is described in several of this similar to 300 kDa hypervariable protein's domains displaying a conserved motif (GACxPxRRxxLC); it established H-bonds with other binding peptides to mediate red blood cell group A and chondroitin sulphate attachment. This motif (when properly modified) induced PfEMP1-specific strain-transcending, fully-protective immunity for the first time in experimental challenge in Aotus monkeys, opening the way forward for a long sought-after vaccine against severe malaria.
Resumo:
Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This `experiment of nature` indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.
Resumo:
Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.
Resumo:
Merozoite surface proteins (MSPs) of the malaria parasites are major candidates for vaccine development targeting asexual blood stages. However, the diverse antigenic repertoire of these antigens that induce strain-specific protective immunity in human is a major challenge for vaccine design and often determines the efficacy of a vaccine. Here we further assessed the genetic diversity of Plasmodium vivax MSP4 (PvMSP4) protein using 195 parasite samples collected mostly from Thailand, Indonesia and Brazil. Overall, PvMSP4 is highly conserved with only eight amino acid substitutions. The majority of the haplotype diversity was restricted to the two short tetrapeptide repeat arrays in exon 1 and 2, respectively. Selection and neutrality tests indicated that exon 1 and the entire coding region of PvMSP4 were under purifying selection. Despite the limited nucleotide polymorphism of PvMSP4, significant genetic differentiation among the three major parasite populations was detected. Moreover, microgeographical heterogeneity was also evident in the parasite populations from different endemic areas of Thailand. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.
Determinantes envolvidos na resposta imune celular humana à infecção por Leishmania infantum chagasi
Resumo:
Visceral leishmaniasis (VL) is a disease caused by protozoa of the Leishmania donovani complex, whose infection has clinical spectrum ranging from asymptomatic infection to active disease characterized by fever, cachexia, hepatosplenomegaly, and immunosuppression. The healing or protective immunity require an antigen-specific type 1. The Montenegro skin test (DTH) has been interpreted as a marker of protective immunity. However, there is no known correlation between the DTH response to type 1 and DTH and immunity of type 1 are maintained in the long term. Thus, a longitudinal study of 8 years, nested in a cohort family held in Brazil, documented the status of DTH and cytokine production by peripheral blood mononuclear cells in response to antigen-specific stimulation. This study was the interdisciplinary approach of physicians, biochemists, nutritionists, veterinary medicine, biology and statistics. The results show that 46.2% of subjects were analyzed DTH positive at baseline. The prevalence of positive and DTH induration size increased with age (p = 0.0021). 15.7% of individuals positive DTH "retro-converted" the negative and 50.4% (64) of individuals negative DTH became positive. The size of DTH induration was correlated significantly with the antigen-induced production of IFN-γ (r = 0.6186, p = 0.0001). IL-6 was secreted at higher levels in peripheral blood mononuclear cells of individuals who "retro-converted" DTH positive to negative than individuals who remained stable DTH status (p = 0.005). Thus, IFN-γ produced by peripheral blood mononuclear cells, may be a surrogate marker for protective immunity instead of the DTH response. In addition, differences in innate immune response may determine whether individuals maintain or eliminate the infection by Leishmania infantum chagasi in asymptomatic patients
Resumo:
Paracoccidioidomicose é a mais prevalente micose sistêmica na América Latina, em pacientes imunocompetentes, sendo causada pelo fungo dimórfico Paracoccidioiddes brasiliensis. O estudo da sua imunopatogênese é importante na compreensão de aspectos relacionados à história natural, como a imunidade protetora, e à relação entre hospedeiro e parasita, favorecendo o entendimento clínico e a elaboração de estratégias terapêuticas. O polimorfismo clínico da doença depende, em última análise, do perfil de resposta imune que prevalece expresso pelo padrão de citocinas teciduais e circulantes, além da qualidade da resposta imune desencadeada, que levam ao dano tecidual
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo deste trabalho foi desenvolver protocolo eficiente e reprodutível de imunização em cobaias com antígenos de P. brasiliensis, visando a obtenção de modelo experimental para futuros estudos de mecanismos de proteção imunológica. Testaram-se três diferentes antígenos (particulado, solúvel e composto) e seis protocolos nos quais foram avaliadas as influências dos seguintes fatores: presença ou ausência de adjuvante completo de Freund, número de doses imunizantes e intervalo de tempo entre a última dose imunizante e o desafio. A eficiência do protocolo de imunização foi estudada pela avaliação da resposta imune celular e humoral anti-P. brasiliensis, utilizando teste cutâneo e teste de inibição da migração do macrófago, e imunodifusão, respectivamente. Observou-se que: 1. Três doses imunizantes de antígeno induziram melhor resposta do que duas doses; 2. Maior resposta imune foi conseguida com a utilização de adjuvante completo de Freund; 3. Animais desafiados depois de longo tempo (6 semanas) da última dose imunizante mostraram melhor resposta imune anti-P. brasiliensis; 4. Os antígenos solúvel e composto foram igualmente eficientes induzindo maior resposta imune humoral e celular anti-P. brasiliensis enquanto que o antígeno particulado provocou menor reatividade
Resumo:
A leishmaniose é uma infecção parasitária cuja imunidade protetora envolve a ativação de macrófagos. Neste trabalho avaliamos a susceptibilidade de camundongos H e L (bons e maus produtores de anticorpos, respectivamente) da seleção IV-A, à infecção com o protozoário L. donovani. Camundongos H infectados com 10(7) amastigotas por via intravenosa foram mais suscetíveis, apresentando maior carga parasitária tanto no fígado quanto no baço. Após 60 dias de infecção ambas as linhagens apresentaram um aumento no índice esplênico. Esta esplenomegalia foi conseqüência, pelo menos parcialmente, de um aumento no número de células esplênicas. Os resultados indicam que a seleção IV-A é susceptível à infecção com L. donovani e que dentro desta seleção a linhagem H apresenta maior suscetibilidade do que a linhagem L.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Pós-graduação em Ciência Animal - FMVA