923 resultados para profiled fiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study aimed at understanding the deformational behavior of conventionally reinforced steel fiber concrete beams in pure bending is reported in this paper. One group of beams has steel fibers dispersed in the entire volume of the beam and the second has fibers dispersed over half the depth of the beam on the tension side. A comparative study of the deformational characteristics of these beams has been made. Half-depth fiber inclusion, requiring only half the quantity of fibers of full-depth inclusion, is found to be equally effective in improving the deformational behavior of beams. Thus, by such modes of inclusion of fibers, an economical and efficient use of expensive steel fibers can be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate an optical waveguide system consisting of an unclad fiber core suspended at a constant distance parallel to the surface of a planar waveguide. The coupling and propagation of light in the combined system is studied using the three-dimensional explicit finite difference beam propagation method with a nonuniform mesh configuration. The power loss in the fiber and the field distribution in the waveguide are studied as a function of various parameters, such as index changes, index profile, and propagation distance, for the combined system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a minimum weight design of carbon/epoxy laminates is carried out using genetic algorithms. New failure envelopes have been developed by the combination of two commonly used phenomenological failure criteria, namely Maximum Stress (MS) and Tsai-Wu (TW) are used to obtain the minimum weight of the laminate. These failure envelopes are the most conservative failure envelope (MCFE) and the least conservative failure envelope (LCFE). Uniaxial and biaxial loading conditions are considered for the study and the differences in the optimal weight of the laminate are compared for the MCFE and LCFE. The MCFE can be used for design of critical load-carrying composites, while the LCFE could be used for the design of composite structures where weight reduction is much more important than safety such as unmanned air vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of strain and temperature with a single tapered fiber Bragg grating is proposed. This method is based on the fact that the reflectivity at central wavelength of FBG reflection changes with chirp (strain gradient). A diode laser is locked to the central wavelength of FBG reflection. Central wavelength of the FBG shifts with temperature. Change in reflectivity & wavelength of the diode laser were used to measure strain and temperature on the FBG respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of static/dynamic strain and temperature with a pair of matched fiber Bragg grating(FBG)s is proposed. When a diode laser locked to the mid reflection frequency of reference FBG is used to illuminate the sensor FBG, reflected intensity changes with strain on sensor FBG. Reference FBG responds with temperature on sensor FBG and is immune to strain, hence, wavelength of the diode laser acts as a signature for temperature measurement. Theoretical sensitivity limit for static strain and temperature are 1.2n epsilon / root Hz and 0.0011 degrees C respectively. Proposed sensor shows a great potential in high sensitive strain measurements with a simplified experimental setup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymptotically correct analysis is developed for Macro Fiber Composite unit cell using Variational Asymptotic Method (VAM). VAM splits the 3D nonlinear problem into two parts: A 1D nonlinear problem along the length of the fiber and a linear 2D cross-sectional problem. Closed form solutions are obtained for the 2D problem which are in terms of 1D parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.