915 resultados para process design


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processing maps developed on the basis of the Dynamic Materials Model provide valuable information that might help the metal working industry in solving problems related to workability and microstructural control in commercial alloys. In this research, the processing maps for an as-cast AZ31 magnesium alloy are presented. The results are validated via microstructural observations, clearly delineating safe and unsafe regimes for further process design of this alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical simulation technique has been employed to study the thermal behavior of hot-forging type forming processes. Experiments on the coining and upsetting of an aluminum billet were conducted to validate the numerical predictions. Typical forming conditions for both the coining and upsetting processes were then studied in detail. an electrical analogy scheme was used to determine the thermal contact resistance. This scheme can conviniently provide the interface characteristics for typical processing conditions, which normally involve high pressures and temperatures. A single forging cycle was first considered, and then a batch of twenty-five forgings was studied. Each forging cycle includes the billet mounting, ascent, loading, dwelling, unloading, descent, and billet removal stages. The temperature distribution in the first forging to be formed is found to be significantly different from that at the end of the batch. In industry, forging is essentially a batch operation. The influence of forming speed and reduction on thermal characteristics was investigated also. The variations that can occur in the process design by considering differences in temperature characteristics are discussed also.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system-copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The horizontal migration of proppant was numerically investigated with a two-fluid model, in which the interaction between fracturing fluid and proppant, along with that among proppants was taken into account through interphase forces. The migration process and the volumetric concentration of the proppant were examined under various conditions, and the. averaged volumetric concentration of the proppant was obtained. The present research might be useful in the process design of the hydraulic fracturing in the oilfields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past 20 years, ferroelectric liquid crystal over silicon (FLCOS) devices have made a wide impact on applications as diverse as optical correlation and holographic projection. To cover the entire gamut of this technology would be difficult and long winded; hence, this paper describes the significant developments of FLCOS within the Engineering Department at the University of Cambridge.The purpose of this paper is to highlight the key issues in fabricating silicon backplane spatial light modulators (SLMs) and to indicate ways in which the technology can be fabricated using cheap, low-density production and manufacturability. Three main devices have been fabricated as part of several research programmes and are documented in this paper. The fast bitplane SLM and the reconfigurable optical switches for aerospace and telecommunications systems (ROSES) SLM will form the basis of a case study to outline the overall processes involved. There is a great deal of commonality in the fabrication processes for all three devices, which indicates their potential strength and demonstrates that these processes can be made independent of the SLMs that are being assembled. What is described is a generic process that can be applied to any silicon backplane SLM on a die-by-die basis. There are hundreds of factors that can affect the yield in a manufacturing process and the purpose of a good process design procedure is to minimise these factors. One of the most important features in designing a process is fabrication experience, as so many of the lessons in this business can only be learned this way. We are working with the advantage of knowing the mistakes already made in the flat panel display industry, but we are also faced with the fact that those mistakes took many years and many millions of dollars to make.The fabrication process developed here originates and adapts earlier processes from various groups around the world. There are also a few totally new processes that have now been adopted by others in the field. Many, such as the gluing process, are still on-going and have to be worked on more before they will fully suit 'manufacturability'. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational analysis software is now widely accepted as a key industrial tool for plant design and process analysis. This is due in part to increased accuracy in the models, larger and faster computer systems and better graphical interfaces that allow easy use of the technology by engineers. The use of computational modelling to test new ideas and analyse current processes helps to take the guesswork out of industrial process design and offers attractive cost savings. An overview of computer-based modelling techniques as applied to the materials processing industry is presented and examples of their application are provided in the contexts of the mixing and refining of lead bullion and the manufacture of lead ingots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express contamination analysis, preparing limited amounts of reactive alloys or experimental material analyses. Aims to present a model to follow the melting process. Design/methodology/approach – The presents a numerical model in which different types of axisymmetric coil configurations are analysed. Findings – The presented numerical model permits dynamically to follow the melting process, the high-frequency magnetic field distribution change, the free surface and the melting front evolution, and the associated turbulent fluid dynamics. The partially solidified skin on the contact to the cold crucible walls and bottom is dynamically predicted. The segmented crucible shape is either cylindrical, hemispherical or arbitrary shaped. Originality/value – The model presented within the paper permits the analysis of melting times, melt shapes, electrical efficiency and particle tracks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to describe the problems encountered and the solutions developed when using benchmarking and key performance indicators (KPIs) to monitor a major UK social house building innovation (change) programme. The innovation programme sought improvements to both the quality of the house product and the procurement process. Design/methodology/approach: Benchmarking and KPIs were used to quantify performance and in-depth case studies to identify underlying cause and effect relationships within the innovation programme. Findings: The inherent competition between consortium members; the complexity of the relationship between the consortium and its strategic partner; the lack of an authoritative management control structure; and the rapidly changing nature of the UK social housing market all proved problematic to the development of a reliable and robust monitoring system. These problems were overcome by the development of multi-dimensional benchmarking model that balanced the needs and aspirations of the individual organisations with the broader objectives of the consortium. Research limitations/implications: Whilst the research methodology provides insight into the factors that affected the performance of a major innovation programme its findings may not be representative of all projects. Practical implications: The lessons learnt should assist those developing benchmarking models for multi-client consortia. Originality/value: The work reported in this paper describes an inclusive approach to benchmarking in which a multiple client group and their strategic partner sought to work together for shared gain. Very few papers have addressed this issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary goal of this work is to quantify any bene?ts that the use of digital manufacturing methods can offer when used upstream from production, for manufacturing process design, and tool development. Learning at this stage of product development is referred to as management learning. Animated build simulations have been used to develop build procedures and tooling for a panel assembly for the new Bombardier CRJ1000 (Canadair Regional Jet, 100 seat). When the jig format was developed, its simulated performance was compared to that of current CRJ700/900 panel builds to identify and quantify any improvements in terms of tooling cost and panel build time. When comparing like-for-like functions between existing CRJ700/900 (Canadair Regional Jet, 70/90 seat) and the
CRJ1000 tooling, it was predicted that the digitally assisted improvements had brought about a 4.9% reduction in jig cost. An evaluation of the build process for the CRJ1000 uplock panel predicted a 5.2% reduction in the assembly time. In addition to the improvement of existing tooling functions, new jig functionality was added so that both the drilling and riveting functions could be carried out in a single jig for the new RJ1000 panel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids (ILs) having either cations or anions derived from naturally occurring amino acids have been synthesized and characterized as amino acid-based ionic liquids (AAILs) In this work, the experimental measurements of the temperature dependence or density. viscosity, heat capacity, and thermal conductivity of several AAILs, namely, tributylmethylammonium serinate ([N-444][Ser], tributylmethylammonium taurmate ([N-444][Tau]) tributylmethylammonium lysinate a [N-444][ Lys]), tributylmethylammonium threonate ([N-444][Thr]), tetrabutylphosphonium serinate ([P-4444][Ser]), tetrabutylphosphonium taurmate ([P-4444][Tau]), tetrabutylphosphonium lysinate ([P-4444][Lys]), tetrabutylphosphonium threonate P-4444 Thr tetrabutylphosphonium prolinate P-4444 ((Pro(), tetrabutylphosphonium valinate ([P-4444][Val]), and tetrabutylphosphonium cysteinate ([P-4444][Cys]), are presented The influence of cations and anions on studied properties is discussed. On the basis of experimental data. the QSPR (quantitative structure property relationship) correlations and group contribution methods for thermophysical properties of AAILs have been developed, which form the basis for the development of the computer-aided molecular design (CAMD) of AAILs It has also been demonstrated that that the predictive data obtained by con elation methods ale in good agreement with the experimental data The correlations developed, herein. can thus be used to evaluate the studied thermophysical properties of AAILs for use in process design or in the CAMD of new AAILs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conversion of biomass for production of liquid fuels can help in reducing the greenhouse gas (GHG) emissions which are predominantly generated by combustion of fossil fuels. Adding oxymethylene ethers (OMEs) in conventional diesel fuel has the potential to reduce soot formation during the combustion in a diesel engine. OMEs are downstream products of syngas, which can be generated by the gasification of biomass. In this research, a thermodynamic analysis has been conducted through development of data intensive process models of all the unit operations involved in production of OMEs from biomass. Based on the developed model, the key process parameters affecting the OMEs production including equivalence ratio, H2/CO ratio, and extra water flow rate were identified. This was followed by development of an optimal process design for high OMEs production. It was found that for a fluidized bed gasifier with heat capacity of 28 MW, the conditions for highest OMEs production are at an air amount of 317 tonne/day, at H2/CO ratio of 2.1, and without extra water injection. At this level, the total OMEs production is 55 tonne/day (13 tonne/day OME3 and 9 tonne/day OME4). This model would further be used in a techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways.