985 resultados para precast concrete


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new generation of concrete, Ultra-high performance fibre reinforced concrete (UHPFRC) has been developed for its outstanding mechanical performance and shows a very promising future in construction applications. In this paper, several possibilities are examined for reducing the price of producing UHPFRC and for bringing UHPFRC away from solely precast applications and onto the construction site as an in situ material. Recycled glass cullet and two types of local natural sand were examined as replacement materials for the more expensive silica sand normally used to produce UHPFRC. In addition, curing of UHPFRC cubes and prisms at 20 degrees C and 90 degrees C has been investigated to determine differences in both mechanical and ductility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, fibre-reinforced self-compacting concretes were developed for precast building components, incorporating either adherent metal fibres or polymeric synthetic slipping fibres or a combination of both. To achieve the warranted workability, compressive and splitting tensile strengths, compositions were determined by preliminary tests on self-compacting materials with various proportions of metal fibres. Bending tests in controlled deflection confirmed the positive contribution of fibres in the mechanical behaviour of self-compacting concrete. The comparison between vibrated and self-compacting concretes of similar mechanical characteristics indicated a possible better fibre-matrix bond in the case of self-compacting types. The results also showed that the properties of the hybrid fibre-reinforced self-compacting concrete could be inferred from the properties of the individual single-fibre reinforcements and their respective proportions through simple mix-rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in a series of tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests, considering different steel indentation depths and concrete covers and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in two series of tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents two test procedures for evaluating the bond stress–slip and the slip–radial dilation relationships when the prestressing force is transmitted by releasing the steel (wire or strand) in precast prestressed elements. The bond stress–slip relationship is obtained with short length specimens, to guarantee uniform bond stress, for three depths of the wire indentation (shallow, medium and deep). An analytical model for bond stress–slip relationship is proposed and compared with the experimental results. The model is also compared with the experimental results of other researchers. Since numerical models for studying bond-splitting problems in prestressed concrete require experimental data about dilatancy angle (radial dilation), a test procedure is proposed to evaluate these parameters. The obtained values of the radial dilation are compared with the prior estimated by numerical modelling and good agreement is reached

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality is the threshold or minimum level required to satisfy the consumer´s demands. In construction the quality is objective, and established by standards. It is very difficult to establish the costs of “no quality” in construction. Each precast unit shall be traceable to a specific set of quality control records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bond analytical model is proposed in this paper. The model is capable of reproducing the bond stress developed between the steel and concrete, in precast prestressed elements, during the entire process of prestressing force release. The bond stress developed in the transmission zone, where the bond stress is not constant, is also obtained. The steel and concrete stresses as well as the slip between both materials can be also estimated by means of the relation established in the model between these parameters and the bond stress. The model is validated with the results of a series of tests, considering different steel indentation depths and concrete covers and it is extended to evaluate the transmission length. This has been checked by comparing the transmission length predicted by the model and one measured experimentally in two series of tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bond analytical model is proposed in this paper. The model is capable of reproducing the bond stress developed between the steel and concrete, in precast prestressed elements, during the entire process of prestressing force release. The bond stress developed in the transmission zone, where the bond stress is not constant, is also obtained. The steel and concrete stresses as well as the slip between both materials can be also estimated by means of the relation established in the model between these parameters and the bond stress. The model is validated with the results of a series of tests, considering different steel indentation depths and concrete covers and it is extended to evaluate the transmission length. This has been checked by comparing the transmission length predicted by the model and one measured experimentally in two series of tests.