919 resultados para power-law graph


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGNs. We study the multiwavelength properties of this sample and compare the AGNs selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the ≥2.5 σ detection level. Most of the remaining galaxies are likely to host AGNs that are heavily obscured in the X-ray. Because the power-law selection requires the AGNs to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 μm detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray-luminous AGNs, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2 : 1). Including all of the power-law galaxies suggests an obscured fraction of <81% (4 : 1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of self-healing in networks that are reconfigurable in the sense that they can change their topology during an attack. Our goal is to maintain connectivity in these networks, even in the presence of repeated adversarial node deletion, by carefully adding edges after each attack. We present a new algorithm, DASH, that provably ensures that: 1) the network stays connected even if an adversary deletes up to all nodes in the network; and 2) no node ever increases its degree by more than 2 log n, where n is the number of nodes initially in the network. DASH is fully distributed; adds new edges only among neighbors of deleted nodes; and has average latency and bandwidth costs that are at most logarithmic in n. DASH has these properties irrespective of the topology of the initial network, and is thus orthogonal and complementary to traditional topology- based approaches to defending against attack. We also prove lower-bounds showing that DASH is asymptotically optimal in terms of minimizing maximum degree increase over multiple attacks. Finally, we present empirical results on power-law graphs that show that DASH performs well in practice, and that it significantly outperforms naive algorithms in reducing maximum degree increase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Web's link structure (termed the Web Graph) is a richly connected set of Web pages. Current applications use this graph for indexing and information retrieval purposes. In contrast the relationship between Web Graph and application is reversed by letting the structure of the Web Graph influence the behaviour of an application. Presents a novel Web crawling agent, AlienBot, the output of which is orthogonally coupled to the enemy generation strategy of a computer game. The Web Graph guides AlienBot, causing it to generate a stochastic process. Shows the effectiveness of such unorthodox coupling to both the playability of the game and the heuristics of the Web crawler. In addition, presents the results of the sample of Web pages collected by the crawling process. In particular, shows: how AlienBot was able to identify the power law inherent in the link structure of the Web; that 61.74 per cent of Web pages use some form of scripting technology; that the size of the Web can be estimated at just over 5.2 billion pages; and that less than 7 per cent of Web pages fully comply with some variant of (X)HTML.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The legal power to declare war has traditionally been a part of a prerogative to be exercised solely on advice that passed from the King to the Governor-General no later than 1942. In 2003, the Governor- General was not involved in the decision by the Prime Minister and Cabinet to commit Australian troops to the invasion of Iraq. The authors explore the alternative legal means by which Australia can go to war - means the government in fact used in 2003 - and the constitutional basis of those means. While the prerogative power can be regulated and/or devolved by legislation, and just possibly by practice, there does not seem to be a sound legal basis to assert that the power has been devolved to any other person. It appears that in 2003 the Defence Minister used his legal powers under the Defence Act 1903 (Cth) (as amended in 1975) to give instructions to the service head(s). A powerful argument could be made that the relevant sections of the Defence Act were not intended to be used for the decision to go to war, and that such instructions are for peacetime or in bello decisions. If so, the power to make war remains within the prerogative to be exercised on advice. Interviews with the then Governor-General indicate that Prime Minister Howard had planned to take the matter to the Federal Executive Council 'for noting', but did not do so after the Governor-General sought the views of the then Attorney-General about relevant issues of international law. The exchange raises many issues, but those of interest concern the kinds of questions the Governor-General could and should ask about proposed international action and whether they in any way mirror the assurances that are uncontroversially required for domestic action. In 2003, the Governor-General's scrutiny was the only independent scrutiny available because the legality of the decision to go to war was not a matter that could be determined in the High Court, and the federal government had taken action in March 2002 that effectively prevented the matter coming before the International Court of Justice

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the statistical properties of spatially averaged global injected power fluctuations for Taylor-Couette flow of a wormlike micellar gel formed by surfactant cetyltrimethylammonium tosylate. At sufficiently high Weissenberg numbers the shear rate, and hence the injected power p(t), at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (PDF) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian PDFs can be well described by a universal, large deviation functional form given by the generalized Gumbel distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute studies have led some authors to conclude that the router graph of the Internet is a scale-free graph, or more generally a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a power-law tail. In this paper we argue that the evidence to date for this conclusion is at best insufficient. We show that graphs appearing to have power-law degree distributions can arise surprisingly easily, when sampling graphs whose true degree distribution is not at all like a power-law. For example, given a classical Erdös-Rényi sparse, random graph, the subgraph formed by a collection of shortest paths from a small set of random sources to a larger set of random destinations can easily appear to show a degree distribution remarkably like a power-law. We explore the reasons for how this effect arises, and show that in such a setting, edges are sampled in a highly biased manner. This insight allows us to distinguish measurements taken from the Erdös-Rényi graphs from those taken from power-law random graphs. When we apply this distinction to a number of well-known datasets, we find that the evidence for sampling bias in these datasets is strong.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteins are biochemical entities consisting of one or more blocks typically folded in a 3D pattern. Each block (a polypeptide) is a single linear sequence of amino acids that are biochemically bonded together. The amino acid sequence in a protein is defined by the sequence of a gene or several genes encoded in the DNA-based genetic code. This genetic code typically uses twenty amino acids, but in certain organisms the genetic code can also include two other amino acids. After linking the amino acids during protein synthesis, each amino acid becomes a residue in a protein, which is then chemically modified, ultimately changing and defining the protein function. In this study, the authors analyze the amino acid sequence using alignment-free methods, aiming to identify structural patterns in sets of proteins and in the proteome, without any other previous assumptions. The paper starts by analyzing amino acid sequence data by means of histograms using fixed length amino acid words (tuples). After creating the initial relative frequency histograms, they are transformed and processed in order to generate quantitative results for information extraction and graphical visualization. Selected samples from two reference datasets are used, and results reveal that the proposed method is able to generate relevant outputs in accordance with current scientific knowledge in domains like protein sequence/proteome analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power law distributions, also known as heavy tail distributions, model distinct real life phenomena in the areas of biology, demography, computer science, economics, information theory, language, and astronomy, amongst others. In this paper, it is presented a review of the literature having in mind applications and possible explanations for the use of power laws in real phenomena. We also unravel some controversies around power laws.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.