869 resultados para power system reliability
Resumo:
Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
In this paper a modified Heffron-Phillip's (K-constant) model is derived for the design of power system stabilizers. A knowledge of external system parameters, such as equivalent infinite bus voltage and external impedances or their equivalent estimated values is required for designing a conventional power system stabilizer. In the proposed method, information available at the secondary bus of the step-up transformer is used to set up a modified Heffron-Phillip's (ModHP) model. The PSS design based on this model utilizes signals available within the generating station. The efficacy of the proposed design technique and the performance of the stabilizer has been evaluated over a range of operating and system conditions. The simulation results have shown that the performance of the proposed stabilizer is comparable to that could be obtained by conventional design but without the need for the estimation and computation of external system parameters. The proposed design is thus well suited for practical applications to power system stabilization, including possibly the multi-machine applications where accurate system information is not readily available.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.
Resumo:
Inadvertent failure of power transformers has serious consequences on the power system reliability, economics and the revenue accrual. Insulation is the weakest link in the power transformer prompting periodic inspection of the status of insulation at different points in time. A close Monitoring of the electrical, chemical and such other properties on insulation as are sensitive to the amount of time-dependent degradation becomes mandatory to judge the status of the equipment. Data-driven Diagnostic Testing and Condition Monitoring (DTCM) specific to power transformer is the aspect in focus. Authors develop a Monte Carlo approach for augmenting the rather scanty experimental data normally acquired using Proto-types of power transformers. Also described is a validation procedure for estimating the accuracy of the Model so developed.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
Electricity generation is vital in developed countries to power the many mechanical and electrical devices that people require. Unfortunately electricity generation is costly. Though electricity can be generated it cannot be stored efficiently. Electricity generation is also difficult to manage because exact demand is unknown from one instant to the next. A number of services are required to manage fluctuations in electricity demand, and to protect the system when frequency falls too low. A current approach is called automatic under frequency load shedding (AUFLS). This article proposes new methods for optimising AUFLS in New Zealand’s power system. The core ideas were developed during the 2015 Maths and Industry Study Group (MISG) in Brisbane, Australia. The problem has been motivated by Transpower Limited, a company that manages New Zealand’s power system and transports bulk electricity from where it is generated to where it is needed. The approaches developed in this article can be used in electrical power systems anywhere in the world.
Resumo:
An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
This paper proposes a method of designing fixed parameter decentralized power system stabilizers (PSS) for interconnected multi-machine power systems. Conventional design technique using a single machine infinite bus approximation involves the frequency response estimation called the GEP(s) between the AVR input and the resultant electrical torque. This requires the knowledge of equivalent external reactance and infinite bus voltage or their estimated values at each machine. Other design techniques using P-Vr characteristics or residues are based on complete system information. In the proposed method, information available at the high voltage bus of the step-up transformer is used to set up a modified Heffron-Phillip's model. With this model it is possible to decide the structure of the PSS compensator and tune its parameters at each machine in the multi-machine environment, using only those signals that are available at the generating station. The efficacy of the proposed design technique has been evaluated on three of the most widely used test systems. The simulation results have shown that the performance of the proposed stabilizer is comparable to that which could be obtained by conventional design but without the need for the estimation and computation of external system parameters.
Resumo:
Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.
Resumo:
Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.