989 resultados para powder diffraction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of new materials in the form of alumino-silicate derivatives from 2:1 layer clay materials which are obtained by the chemical modification of 2:1 layer clay minerals by reaction with a salt having the formula MX wherein M is ammonium ion or alkali metal cation and X is a halide. The new materials have the following characteristics: (a) an amorphous x-ray diffraction signal manifest as a broad hump using x-ray powder diffraction between 22.degree. and 32.degree. 2.theta. using CuK.alpha. radiation; and (b) the presence of primarily tetrahedrally coordinated aluminum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stichtite is a naturally occurring layered double hydroxide (LDH) with the ideal chemical formula Mg6Cr2CO3(OH)16·4H2O. It has received less attention in the literature than other LDHs and is often described as a rare mineral; however, abundant deposits of the mineral do exist. In this article we aim to review a number of significant publications concerning the mineral stichtite, including papers covering the discovery, geological origin, synthesis and characterizsation of stichtite. Characterization techniques reviewed include powder X-ray diffraction (XRD), infrared spectroscopy (IR), near infrared spectroscopy (NIR), Raman spectroscopy (Raman), thermogravimetry (TG) and electron microprobe analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparison of well-determined single crystal data for stoichiometric, or near-stoichiometric, metal hexaborides con-firm previously identified lattice parameter trends using powder diffraction. Trends for both divalent and trivalent forms suggest that potential new forms for synthesis include Sc and Mn hexaborides. Density Functional Theory (DFT) calculations for KB6, CaB6, YB6, LaB6, boron octahedral clusters and Sc and Mn forms, show that the shapes of bonding orbitals are defined by the boron framework. Inclusion of metal into the boron framework induces a reduction in energy ranging from 1 eV to 6 eV increasing with ionic charge. For metals with d1 character, such a shift in energy brings a doubly degenerate band section along the G-M reciprocal space direction within the conduction bands tangential to the Fermi surface. ScB6 band structure and density of states calculations show directional and gap characteristics similar to those of YB6 and LaB6. These calculations for ScB6 suggest it may be possible to realize superconductivity in this compound if synthesized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-energy synchrotron in situ X-ray powder diffraction has been used to elucidate the mechanism of the hydriding phase transformation in a LaNi5 model hydrogen storage intermetallic in real time. The transformation proceeds at 10 °C via the transient growth of an interfacial phase, the γ phase, with lattice parameters intermediate between those of the α (dilute solid solution) and β (concentrated hydride) phases. The γ phase forms to partially accommodate the 24% change in unit cell volume between the α and β phases during hydriding and dehydriding. The α, γ and β phases coexist at the nanoscopic level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various models for the crystal structure of hydronium jarosite were determined from Rietveld refinements against neutron powder diffraction patterns collected at ambient temperature and also single-crystal X-ray diffraction data. The possibility of a lower symmetry space group for hydronium jarosite that has been suggested by the literature was investigated. It was found the space group is best described as R3¯m, the same for other jarosite minerals. The hydronium oxygen atom was found to occupy the 3¯m site (3a Wyckoff site). Inadequately refined hydronium bond angles and bond distances without the use of restraints are due to thermal motion and disorder of the hydronium hydrogen atoms across numerous orientations. However, the acquired data do not permit a precise determination of these orientations; the main feature up/down disorder of hydronium is clear. Thus, the highest symmetry model with the least disorder necessary to explain all data was chosen: The hydronium hydrogen atoms were modeled to occupy an m (18 h Wyckoff site) with 50 % fractional occupancy, leading to disorder across two orientations. A rigid body description of the hydronium ion rotated by 60° with H–O–H bond angles of 112° and O–H distances of 0.96 Å was optimal. This rigid body refinement suggests that hydrogen bonds between hydronium hydrogen atoms and basal sulfate oxygen atoms are not predominant. Instead, hydrogen bonds are formed between hydronium hydrogen atoms and hydroxyl oxygen atoms. The structure of hydronium alunite is expected to be similar given that alunite supergroup minerals are isostructural.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of novel thermo-responsive composite sorbents, were prepared by free-radical co-polymerization of N-isopropylacrylamide (NIPAm) and the silylanized Mg/Al layered double hydroxides (SiLDHs), named as PNIPAm-co-SiLDHs. For keeping the high affinity of Mg/Al layered double hydroxides towards anions, the layered structure of LDHs was assumed to be reserved in PNIPAm-co-SiLDHs by the silanization of the wet LDH plates as evidenced by the X-ray powder diffraction. The sorption capacity of PNIPAm-co-SiLDH (13.5 mg/g) for Orange-II from water was found to be seven times higher than that of PNIPAm (2.0 mg/g), and the sorption capacities of arsenate onto PNIPAm-co-SiLDH are also greater than that onto PNIPAm, for both As(III) and As(V). These sorption results suggest that reserved LDH structure played a significant role in enhancing the sorption capacities. NO3− intercalated LDHs composite showed the stronger sorption capacity for Orange-II than that of CO32−. After sorption, the PNIPAm-co-SiLDH may be removed from water because of its gel-like nature, and may be easily regenerated contributing to the accelerated desorption of anionic contaminants from PNIPAm-co-SiLDHs by the unique phase-transfer feature through slightly heating (to 40 °C). These recyclable and regeneratable properties of thermo-responsive nanocomposites facilitate its potential application in the in-situ remediation of organic and inorganic anions from contaminated water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.