952 resultados para potassium bicarbonate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes play a central role in the brain by regulating glutamate and extracellular potassium concentrations ([K+]0), both released by neurons into the extracellular space during neuronal activity. Glutamate uptake is driven by the inwardly directed sodium gradient across the astrocyte membrane and involves the influx of three sodium ions and one proton and the efflux of one K+ ion per glutamate molecule. The glutamate transport induced rise in intracellular sodium stimulates the Na+/K+-ATPase which leads to significant energetic costs in astrocytes. To evaluate how these two fundamental functions of astrocytes, namely glutamate transport and K+ buffering, which are directly associated with neuronal activity, coexist and if they influence each other, in this thesis work we examined different cellular parameters of astrocytes. We therefore investigated the impact of altered [K+]0 on glutamate transporter activity. To assess this question we measured intracellular sodium fluctuations in mouse primary cultured astrocytes using dynamic fluorescence imaging. We found that glutamate uptake was tightly modulated both in amplitude and kinetics by [K+]0. Elevated [K+]0 strongly decreased glutamate transporter activity, with significant consequences on the cells energy metabolism. To ultimately evaluate potential effects of [K+]0 and glutamate on the astrocyte mitochondrial energy production we extended these studies by investigating their impact on the cytosolic and mitochondrial pH. We found that both [K+],, and glutamate strongly influenced cytosolic and mitochondrial pH, but in opposite directions. The effect of a simultaneous application of K+ and glutamate, however, did not fit with the arithmetical sum of each individual effects, suggesting that an additional non¬linear process is involved. We also investigated the impact of [K+]0 and glutamate transport, respectively, on intracellular potassium concentrations ([K+]0 in cultured astrocytes by characterizing and applying a newly developed Insensitive fluorescent dye. We observed that [K+]i followed [K+]0 changes in a nearly proportional way and that glutamate superfusion caused a reversible, glutamate-concentration dependent drop of [K+],, Our study shows the powerful influence of [K+]u on glutamate capture. These findings have strong implications for our understanding of the tightly regulated interplay between astrocytes and neurons in situations where [K+]0 undergoes large activity-dependent fluctuations. However, depending on the extent of K+ versus glutamate extracellular rise, energy metabolism in astrocytes will be differently regulated. Moreover, the novel insights obtained during this thesis work help understanding some of the underlying processes that prevail in certain pathologies of central nervous system, such as epilepsy and stroke. These results will possibly provide a basis for the development of novel therapeutic strategies. -- Les astrocytes jouent un rôle central dans le cerveau en régulant les concentrations de potassium (K+) et de glutamate, qui sont relâchés par les neurones dans l'espace extracellulaire lorsque ceux- ci sont actifs. La capture par les astrocytes du glutamate est un processus secondairement actif qui implique l'influx d'ions sodium (Na+) et d'un proton, ainsi que l'efflux d'ions K+, ce processus entraîne un coût métabolique important. Nous avons évalué comment ces fonctions fondamentales des astrocytes, la régulation du glutamate et du K+ extracellulaire, qui sont directement associés à l'activité neuronale, coexistent et si elles interagissent, en examinant différents paramètres cellulaires. Dans ce projet de thèse nous avons évalué l'impact des modifications de la concentration de potassium extracellulaire ([K+],,) sur le transport du glutamate. Nous avons mesuré le transport du glutamate par le biais des fluctuations internes de Na+ grâce à un colorant fluorescent en utilisant de l'imagerie à fluorescence dynamique sur des cultures primaires d'astrocytes. Nous avons trouvé que la capture du glutamate était étroitement régulée par [K+]0 aussi bien dans son amplitude que dans sa cinétique. Par la suite, nous avons porté notre attention sur l'impact de [K+]0 et du glutamate sur le pH cytosolique et mitochondrial de l'astrocyte dans le but, in fine, d'évaluer les effets potentiels sur la production d'énergie par la mitochondrie. Nous avons trouvé qu'autant le K+ que le glutamate, de manière individuelle, influençaient fortement le pH, cependant dans des directions opposées. Leurs effets individuels, ne peuvent toutefois pas être additionnés ce qui suggère qu'un processus additionnel non-linéaire est impliqué. En appliquant une nouvelle approche pour suivre et quantifier la concentration intracellulaire de potassium ([K+]0 par imagerie à fluorescence, nous avons observé que [K+]i suivait les changements de [K+]0 de manière quasiment proportionnelle et que la superfusion de glutamate induisait un décroissement rapide et réversible de [K+]i, qui dépend de la concentration de glutamate. Notre étude démontre l'influence de [K+]0 sur la capture du glutamate. Ces résultats permettent d'améliorer notre compréhension de l'interaction entre astrocytes et neurones dans des situations où [K+]0 fluctue en fonction de l'activité neuronale. Cependant, en fonction de l'importance de l'augmentation extracellulaire du K+ versus le glutamate, le métabolisme énergétique des astrocytes va être régulé de manière différente. De plus, les informations nouvelles que nous avons obtenues durant ce travail de thèse nous aident à comprendre quelques- uns des processus sous-jacents qui prévalent dans certaines pathologies du système nerveux central, comme par exemple l'épilepsie ou l'accident vasculaire cérébral. Ces informations pourront être importantes à intégrer dans la cadre du développement de nouvelles stratégies thérapeutiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutritional support in acute renal failure must take into account the patient's catabolism and the treatment of the renal failure. Hypermetabolic failure is common in these patients, requiring continuous renal replacement therapy or daily hemodialysis. In patients with normal catabolism (urea nitrogen below 10 g/day) and preserved diuresis, conservative treatment can be attempted. In these patients, relatively hypoproteic nutritional support is essential, using proteins with high biological value and limiting fluid and electrolyte intake according to the patient's individual requirements. Micronutrient intake should be adjusted, the only buffering agent used being bicarbonate. Limitations on fluid, electrolyte and nitrogen intake no longer apply when extrarenal clearance techniques are used but intake of these substances should be modified according to the type of clearance. Depending on their hemofiltration flow, continuous renal replacement systems require high daily nitrogen intake, which can sometimes reach 2.5 g protein/kg. The amount of volume replacement can induce energy overload and therefore the use of glucose-free replacement fluids and glucose-free dialysis or a glucose concentration of 1 g/L, with bicarbonate as a buffer, is recommended. Monitoring of electrolyte levels (especially those of phosphorus, potassium and magnesium) and of micronutrients is essential and administration of these substances should be individually-tailored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both angiotensin converting enzyme (ACE) inhibitors and potassium-sparing diuretics tend to increase serum potassium levels. This retrospective study was undertaken to assess whether these two types of agents can nevertheless be combined safely. Twelve hypertensive patients were treated for 1-70 months (mean = 17) with an ACE inhibitor together with a potassium-sparing diuretic (spironolactone, n = 10; amiloride, n = 2). In addition, eight patients also took a thiazide or a loop diuretic. Nine patients had a normal and three a slightly impaired renal function. No clinically relevant hyperkalemia was observed during the course of the study. These data suggest that it is not impossible to combine an ACE inhibitor with a potassium-sparing diuretic, as long as renal function is normal and serum potassium concentration is monitored closely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-negative bacteria possess a type III secretion system (TTSS( paragraph sign)) that can activate the NLRC4 inflammasome, process caspase-1 and lead to secretion of mature IL-1beta. This is dependent on the presence of intracellular flagellin. Previous reports have suggested that this activation is independent of extracellular K(+) and not accompanied by leakage of K(+) from the cell, in contrast to activation of the NLRP3 inflammasome. However, non-flagellated strains of Pseudomonas aeruginosa are able to activate NLRC4, suggesting that formation of a pore in the cell membrane by the TTSS apparatus may be sufficient for inflammasome activation. Thus, we set out to determine if extracellular K(+) influenced P. aeruginosa inflammasome activation. We found that raising extracellular K(+) prevented TTSS NLRC4 activation by the non-flagellated P. aeruginosa strain PA103DeltaUDeltaT at concentrations above 90 mm, higher than those reported to inhibit NLRP3 activation. Infection was accompanied by efflux of K(+) from a minority of cells as determined using the K(+)-sensitive fluorophore PBFI, but no formation of a leaky pore. We obtained exactly the same results following infection with Salmonella typhimurium, previously described as independent of extracellular K(+). The inhibitory effect of raised extracellular K(+) on NLRC4 activation thus reflects a requirement for a decrease in intracellular K(+) for this inflammasome component as well as that described for NLRP3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the extracellular volume in hemodialysis patients is a difficult task. The aim of this study was to evaluate the capacity of different methods of stimulated sweating to reduce mean interdialytic weight gain (IWG), to improve blood pressure regulation, and potassium/urea balance. Two center, crossover pilot study. In Lausanne, hemodialysis patients took four hot-water baths a week, 30 minutes each, on nondialysis days during 1 month. In Sfax, patients visited the local Hammam Center four times a week. Hemodynamic parameters were recorded, and weekly laboratory analysis was performed. Results were compared with a preceding 1-month control period. In Lausanne, five patients (all men, median age 55 years) participated. Bathing temperature was (mean ± standard deviation) 41.2 ± 3°C and sweating-induced weight loss 600 ± 500 g. Mean IWG (control vs. intervention period) decreased from 2.3 ± 0.9 to 1.8 ± 1 kg (P = 0.004), Systolic blood pressure from 139 ± 21 to 136 ± 22 mmHg (P = 0.4), and diastolic blood pressure form 79 ± 12 to 75 ± 13 mmHg (P = 0.08); antihypertensive therapy could be reduced from 2.8 ± 0.4 to 1.9 ± 0.5 antihypertensive drugs per patient (P = 0.01). In Sfax (n = 9, median age 46 years), weight loss per Hammam session was 420 ± 100 g. No differences were found in IWG or BP, but predialysis serum potassium level decreased from 5.9 ± 0.8 to 5.5 ± 0.9 mmol/L (P = 0.04) and urea from 26.9 ± 6 to 23.1 ± 6 mmol/L (P = 0.02). Hot-water baths appear to be a safe way to reduce IWG in selected hemodialysis patients. Hammam visits reduce serum potassium and urea levels, but not IWG. More data in larger patient groups are necessary before definite conclusion can be drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A rapid decrease of serum potassium concentrations during haemodialysis produces a significant increase in blood pressure parameters at the end of the session, even if effects on intra-dialysis pressure are not seen. Paradoxically, in animal models potassium is a vasodilator and decreases myocardial contractility. The purpose of this trial is to study the precise haemodynamic consequences induced by acute changes in potassium concentration during haemodialysis. METHODS: In 24 patients, 288 dialysis sessions, using a randomised single blind crossover design, we compared six dialysate sequences with different potassium profiles. The dialysis sessions were divided into 3 tertiles, casually modulating potassium concentration in the dialysate between the value normally used K and the two cut-off points K+1 and K-1 mmol/l. Haemodynamics were evaluated in a non-invasive manner using a finger beat-to-beat monitor. RESULTS: Comparing K-1 and K+1, differences were found within the tertiles regarding systolic (+5.3, +6.6, +2.3 mmHg, p < 0.05, < 0.05, ns) and mean blood pressure (+4.3, +6.4, -0.5 mmHg, p < 0.01, < 0.01, ns), as well as peripheral resistance (+212, +253, -4 dyne.sec.cm-5, p < 0.05, < 0.05, ns). The stroke volume showed a non-statistically-significant inverse trend (-3.1, -5.2, -0.2 ml). 18 hypotension episodes were recorded during the course of the study. 72% with K-1, 11% with K and 17% with K+1 (p < 0.01 for comparison K-1 vs. K and K-1 vs. K+1). CONCLUSIONS: A rapid decrease in the concentration of serum potassium during the initial stage of the dialysis-obtained by reducing the concentration of potassium in the dialysate-translated into a decrease of systolic and mean blood pressure mediated by a decrease in peripheral resistance. The risk of intra-dialysis hypotension inversely correlates to the potassium concentration in the dialysate. TRIAL REGISTRATION NUMBER: NCT01224314.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic acidosis is a prevalent complication in moderate and late stages of chronic kidney disease (CKD). It is established that the correction of metabolic acidosis may improve metabolic bone disorders and protein degradation in the skeletal muscle, two characteristic complications of patients with advanced CKD. In the last 18 months, three randomized controlled trials have drawn the attention on a novel indication to correct metabolic acidosis in these patients, i.e., halting CKD progression. These data show that sodium bicarbonate, a cheap and easily manageable treatment, may delay the progression of CKD and the need of a renal replacement therapy such as dialysis or kidney transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A concentrate for bicarbonate haemodialysis acidified with citrate instead of acetate has been marketed in recent years. The small amount of citrate used (one-fifth of the concentration adopted in regional anticoagulation) protects against intradialyser clotting while minimally affecting the calcium concentration. The aim of this study was to compare the impact of citrate- and acetate-based dialysates on systemic haemodynamics, coagulation, acid-base status, calcium balance and dialysis efficiency. METHODS: In 25 patients who underwent a total of 375 dialysis sessions, an acetate dialysate (A) was compared with a citrate dialysate with (C+) or without (C) calcium supplementation (0.25 mmol/L) in a randomised single-blind cross-over study. Systemic haemodynamics were evaluated using pulse-wave analysis. Coagulation, acid-base status, calcium balance and dialysis efficiency were assessed using standard biochemical markers. RESULTS: Patients receiving the citrate dialysate had significantly lower systolic blood pressure (BP) (-4.3 mmHg, p < 0.01) and peripheral resistances (PR) (-51 dyne.sec.cm-5, p < 0.001) while stroke volume was not increased. In hypertensive patients there was a substantial reduction in BP (-7.8 mmHg, p < 0.01). With the C+ dialysate the BP gap was less pronounced but the reduction in PR was even greater (-226 dyne.sec.cm-5, p < 0.001). Analyses of the fluctuations in PR and of subjective tolerance suggested improved haemodynamic stability with the citrate dialysate. Furthermore, an increase in pre-dialysis bicarbonate and a decrease in pre-dialysis BUN, post-dialysis phosphate and ionised calcium were noted. Systemic coagulation activation was not influenced by citrate. CONCLUSION: The positive impact on dialysis efficiency, acid-base status and haemodynamics, as well as the subjective tolerance, together indicate that citrate dialysate can significantly contribute to improving haemodialysis in selected patients.