946 resultados para pooled sequencing
Resumo:
The recent advances in sequencing technologies have given all microbiology laboratories access to whole genome sequencing. Providing that tools for the automated analysis of sequence data and databases for associated meta-data are developed, whole genome sequencing will become a routine tool for large clinical microbiology laboratories. Indeed, the continuing reduction in sequencing costs and the shortening of the 'time to result' makes it an attractive strategy in both research and diagnostics. Here, we review how high-throughput sequencing is revolutionizing clinical microbiology and the promise that it still holds. We discuss major applications, which include: (i) identification of target DNA sequences and antigens to rapidly develop diagnostic tools; (ii) precise strain identification for epidemiological typing and pathogen monitoring during outbreaks; and (iii) investigation of strain properties, such as the presence of antibiotic resistance or virulence factors. In addition, recent developments in comparative metagenomics and single-cell sequencing offer the prospect of a better understanding of complex microbial communities at the global and individual levels, providing a new perspective for understanding host-pathogen interactions. Being a high-resolution tool, high-throughput sequencing will increasingly influence diagnostics, epidemiology, risk management, and patient care.
Resumo:
We have initiated a gene discovery program in Schistosoma mansoni based on the technique of Expressed Sequence Tags (ESTs), i.e. partial sequences of cDNAs obtained from single passes in automatic DNA sequencers. ESTs can be used to identify genese onf the basis of their homology whith sequences from other species deposited in DNA or protein databases. Trasncripts with sequences without matches in teh databases may represent novel parasite-specific genes. This approach has shown to be very efficient and in less than two years a broad range of novel genes has already been ascertained, more than doubling the number of known S. mansoni genes.
Resumo:
Lung transplant recipients present an increased risk for severe complications associated with respiratory infections. We conducted a review of the literature examining the clinical relationship between viral respiratory infection and graft complications. Thirty-four studies describing the clinical impact of influenza, respiratory syncytial virus, parainfluenza, human metapneumovirus, rhinovirus, enterovirus, coronavirus, bocavirus or adenovirus were identified. The detection rate of respiratory viral infection ranged from 1.4% to 60%. Viruses were detected five times more frequently when respiratory symptoms were present [odds ratio (OR) = 4.97; 95% CI = 2.11-11.68]. Based on available observations, we could not observe an association between respiratory viral infection and acute rejection (OR = 1.35; 95% CI = 0.41-4.43). We found a pooled incidence of 18% (9/50) of bronchiolitis obliterans syndrome (BOS) in virus-positive cases compared to 11.6% (37/319) in virus-negative cases; however, limited number of BOS events did not allow to confirm the association. Our review confirms a causal relationship between respiratory viruses and respiratory symptoms, but cannot confirm a link between respiratory viruses and acute lung rejection. This is related in part to the heterogeneity and limitations of available studies. The link with BOS needs also to be reassessed in appropriate prospective studies.
Resumo:
Twelve primers to amplify microsatellite markers from the chloroplast genome of Lolium perenne were designed and optimized using de novo sequencing and in silico sequences. With one exception, each locus was polymorphic with a range from two to nine alleles in L. perenne. The newly developed primer pairs cross-amplified in different species of Lolium and in 50 other grass species representing nine grass subfamilies.
Resumo:
BACKGROUND: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line. PATIENTS AND METHODS: Patients were pooled from two phase II trials (SAKK19/05 and NTR528). For survival analyses, a log-rank test was used to determine if there was a statistically significant difference between groups. The hazard ratio (HR) of any separation was assessed using Cox proportional hazards models. RESULTS: 117 patients were analyzed. VeriStrat classified patients into two groups which had a statistically significant difference in duration of OS (p=0.0027, HR=0.480, 95% confidence interval: 0.294-0.784). CONCLUSION: VeriStrat has a prognostic role in patients with advanced, nonsquamous NSCLC treated with erlotinib and bevacizumab in the first line. Further work is needed to study the predictive role of VeriStrat for erlotinib and bevacizumab in chemotherapy-untreated patients.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.
Resumo:
BACKGROUND: Greater tobacco smoking and alcohol consumption and lower body mass index (BMI) increase odds ratios (OR) for oral cavity, oropharyngeal, hypopharyngeal, and laryngeal cancers; however, there are no comprehensive sex-specific comparisons of ORs for these factors. METHODS: We analyzed 2,441 oral cavity (925 women and 1,516 men), 2,297 oropharynx (564 women and 1,733 men), 508 hypopharynx (96 women and 412 men), and 1,740 larynx (237 women and 1,503 men) cases from the INHANCE consortium of 15 head and neck cancer case-control studies. Controls numbered from 7,604 to 13,829 subjects, depending on analysis. Analyses fitted linear-exponential excess ORs models. RESULTS: ORs were increased in underweight (<18.5 BMI) relative to normal weight (18.5-24.9) and reduced in overweight and obese categories (>/=25 BMI) for all sites and were homogeneous by sex. ORs by smoking and drinking in women compared with men were significantly greater for oropharyngeal cancer (p < 0.01 for both factors), suggestive for hypopharyngeal cancer (p = 0.05 and p = 0.06, respectively), but homogeneous for oral cavity (p = 0.56 and p = 0.64) and laryngeal (p = 0.18 and p = 0.72) cancers. CONCLUSIONS: The extent that OR modifications of smoking and drinking by sex for oropharyngeal and, possibly, hypopharyngeal cancers represent true associations, or derive from unmeasured confounders or unobserved sex-related disease subtypes (e.g., human papillomavirus-positive oropharyngeal cancer) remains to be clarified.
Resumo:
Simple sequence repeat anchored polymerase chain reaction amplification (SSR-PCR) is a genetic typing technique based on primers anchored at the 5' or 3' ends of microsatellites, at high primer annealing temperatures. This technique has already been used in studies of genetic variability of several organisms, using different primer designs. In order to conduct a detailed study of the SSR-PCR genomic targets, we cloned and sequenced 20 unique amplification products of two commonly used primers, CAA(CT)6 and (CA)8RY, using Biomphalaria glabrata genomic DNA as template. The sequences obtained were novel B. glabrata genomic sequences. It was observed that 15 clones contained microsatellites between priming sites. Out of 40 clones, seven contained complex sequence repetitions. One of the repeats that appeared in six of the amplified fragments generated a single band in Southern analysis, indicating that the sequence was not widespread in the genome. Most of the annealing sites for the CAA(CT)6 primer contained only the six repeats found within the primer sequence. In conclusion, SSR-PCR is a useful genotyping technique. However, the premise of the SSR-PCR technique, verified with the CAA(CT)6 primer, could not be supported since the amplification products did not result necessarily from microsatellite loci amplification.
Resumo:
Mycobacterium tuberculosis strains resistant to streptomycin (SM), isoniazid (INH), and/or rifampin (RIF) as determined by the conventional Löwenstein-Jensen proportion method (LJPM) were compared with the E test, a minimum inhibitory concentration susceptibility method. Discrepant isolates were further evaluated by BACTEC and by DNA sequence analyses for mutations in genes most often associated with resistance to these drugs (rpsL, katG, inhA, and rpoB). Preliminary discordant E test results were seen in 75% of isolates resistant to SM and in 11% to INH. Discordance improved for these two drugs (63%) for SM and none for INH when isolates were re-tested but worsened for RIF (30%). Despite good agreement between phenotypic results and sequencing analyses, wild type profiles were detected on resistant strains mainly for SM and INH. It should be aware that susceptible isolates according to molecular methods might contain other mechanisms of resistance. Although reproducibility of the LJPM susceptibility method has been established, variable E test results for some M. tuberculosis isolates poses questions regarding its reproducibility particularly the impact of E test performance which may vary among laboratories despite adherence to recommended protocols. Further studies must be done to enlarge the evaluated samples and looked possible mutations outside of the hot spot sequenced gene among discrepant strains.
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.