861 resultados para polymer films, conducting, sensing application
Resumo:
This review deals with surface-enhancved Raman scattering (SERS) employing Langmuir-Blodgett (LB) films, which serve as model systems for developing theoretical and experimental studies to elucidate the SERS effect. In addition, LB films have be used as integral parts of molecular architectures for SERS-active substrates. On the other hand, SERS and surface-enhaced resonant Raman scattering (SERRS) have allowed various properties of LB films to be investigated, especially those associated with molecular-level interactions. In the paper, emphasis is placed on single molecule detection (SMD), where the target molecule is diluted on an LB matrix of spectral silent material (low Raman cross section). The perspectives and challenges for combining SERS and LB films are also discussed.
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.
Resumo:
Langmuir films have been fabricated from poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene] (OC1OC6-PPV). The stability and the area per monomer for condensed films indicate the formation of true monolayers with a very small extent of aggregation, which is unusual for polymer films. This is attributed to the linearity of the alkyl side chain. The Y-type Langmuir-Blodgett (LB) films produced from Langmuir films of OC1OC6-PPV have distinctive features compared to those of cast films, probably due to the organization in the LB films whereas the molecules are randomly oriented in cast films. Infrared absorption spectra recorded for both transmission and reflection modes indicate that OC1OC6-PPV molecules are anchored to the substrate by the lateral groups. This is confirmed by the Raman spectrum, in which a distortion of the vinylene group was observed, and by surface enhanced fluorescence (SEF) on an LB monolayer deposited onto Ag nanoparticles. The more homogeneous nature of the LB films in comparison with the case of cast films was demonstrated by optical microscopy and fluorescence measurements where the emission spectra were essentially the same for different regions of an LB film but showed dispersion in cast films. The LB films also displayed reversible photoconductivity.
Resumo:
Blend films of poly (o-ethoxyaniline) (POEA) and collagen were fabricated by casting under optimized conditions and characterized by Raman scattering and UV-vis absorption spectroscopies. The UV-vis spectra showed that the addition of collagen in the aqueous solution of POEA promotes a dedoping of the POEA. This effect was also observed for the blend films as supported by Raman scattering and a mechanism for the chemical interaction between POEA-collagen is proposed. The influences of different percentage of collagen as well as the pH of stock solutions during the fabrication process of the blend films were also investigated. It was found that the preparation method plays an important role in the flexibility and freestanding properties of the films. Complementary, the surface morphology was studied by atomic force microscopy and the conductivity by dc measurements. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polymer films were grown in rf discharges containing different proportions of C2H2 and SF6. Quantitative optical emission spectrometry (actinometry) was used to follow the trends in the plasma concentrations of the species H and F, and more tentatively, of CH, CF, and CF2, as a function of the feed composition. Infrared spectroscopy revealed the density of CH and CF bonds in the deposited material. As the partial pressure of SF6 in the feed was increased, the degree of fluorination of the polymer also rose. The form of the dependency of the deposition rate on the proportion of SF6 in the feed was in good qualitative agreement with the activated growth model. From transmission ultraviolet visible spectroscopy data the refractive index and the absorption coefficient of the polymers were calculated as a function of the deposition parameters. Since the optical gap depended to some extent upon the degree of fluorination, it could, within limits, be determined by a suitable choice of the proportion of SF6 in the feed. A qualitative explanation of this relationship is given.
Resumo:
The electrical properties of poly p-phenylene sulfide (PPS) samples sandwiched between metallic electrodes are studied as a function of the applied voltage, temperature, time, electrode materials, and sample thickness. Superlinear current-voltage characteristics are observed, which are explained in terms of Schottky effect and space-charge limited currents (SCLC). The conductivity data for variable-range hopping have also been studied, but the calculated values of density of states are approximately one order of magnitude higher than those obtained by SCLC measurements. From thermally stimulated polarization currents we observed a current peak around 80°C that was related with the glass transition temperature of PPS. © 1993.
Resumo:
Thin polymer films were deposited from acetylene and argon mixtures by plasma immersion ion implantation and deposition. The effect of the pulse frequency, v, on molecular structure, optical gap, contact angle and hardness of the films was investigated. It was observed progressive dehydrogenation of the samples and increment in the concentration of unsaturated carbon bonds as the pulse frequency was increased. Film hardness and contact angle increased and optical gap decreased with v. These results are interpreted in terms of the chain unsaturation and crosslinking.
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.
Resumo:
Flexible standing films of piezoelectric composite made of lead zirconate titanate (PZT) ceramic powder and Poly(3-hydroxybutyrate) (PHB) in powder form were obtained by mixing both polymers mechanically and pressed at 180°C. The piezoelectric coefficient d33 were investigated as function of PZT content, poling temperature and electric field. The highest value for d 33 coefficient was around 6pC/N for 50 vol% of PZT content in the composite. As PHB is a biodegradable polymer the composite has potential application as sensor minimizing the environmental problems.
Resumo:
The methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2′-chloro-4-nitroazobenzene (MMADR13), in its polyelectrolyte form, can be used to fabricate thin films by the layer-by-layer (LbL) technique just if one alternates this anionic polyelectrolyte with a cationic polyelectrolyte such as poly(allylamine hydrochloride) (PAH). Since PAH does not present any particular optical functionality, the main final film feature will came from the side chain DR13 azo-chromophore group due to its large nonlinear optical properties and photoisomerization capabilities. This work reports the electrooptic activity of MMADR13/DR13 LBL films, which arises from the high hiperpolarizability about the azo side chain group.
Preparation and characterization of castor oil-based polyurethane/poly(o- methoxyaniline) blend film
Resumo:
Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.
Resumo:
CCTO thin films were deposited on Pt(111)/Ti/SiO 2/Si substrates using a chemical (polymeric precursor) and pressure method. The pressure effects on the CCTO thin films were evaluated by XRD, FEG-SEM and optical properties. Pressure films were found to be more homogeneous and dense than chemical deposition films. Pressure also leaded to an increase in the photoluminescence emission; it is suggested that the displacement of Ti in the titanate clusters, favors the charge transference from TiO 6 to [TiO 5V o z], TiO 5V o z] to [CaO 11V o z] and [TiO 5V o z] to [CuO 4] x. The low synthesis temperature used in the pressure method allows the deposition of films on less expensive substrates (i.e. glass, aluminum, polymer and others).
Resumo:
We report investigations on running holograms recorded in an azopolymer film made of a poly(methyl methacrylate) matrix doped with Disperse Red 1. Two-wave mixing experiments were carried out in the symmetrical transmission geometry. A stabilization technique was employed for active control of the phase shift between the real-time hologram and the interference pattern. Depending on the imposed phase shift, a running hologram propagates in the material in the form of an isomerization wave created by a continuous erasing-rewriting process. Diffraction efficiencies and the hologram velocities were measured as functions of the holographic phase shift at the wavelengths 515 and 488 nm. The experimental results were compared to theoretical curves obtained from a simplified model of the isomerization kinetics. The selective contributions of the phase and the amplitude gratings to the whole hologram were also determined. © 2013 Springer-Verlag Berlin Heidelberg.