944 resultados para poly lactide co glycolide
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.
Resumo:
Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticles made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed as drug carriers. Praziquantel, a hydrophobic drug, was entrapped into the polymeric nanoparticles with 30% (w/w) of theoretical loading. The nanoparticles size was approximately of 350 nm with 66% of encapsulation efficiency. The everted gut sac model shows to be efficient to evaluate the drug permeation through the intestinal membrane. The results show that free praziquantel presents 4-fold times more permeation than praziquantel-loaded PLGA nanoparticles and physical mixture. For this drug, in special, this result can be interesting, since the nanoparticulate system can behave as a drug reservoir and/or to have a more localized effect in intestinal membrane for a prolonged period of time, since great amounts of parasites can be usually found in the mesenteric veins.
Resumo:
Nanoparticles containing praziquantel made of Poly (D,L-lactide-co-glycolide) were designed by an emulsion-solvent evaporation method. Two organic solvents were separately utilized as disperse phase: methylene chloride and ethyl acetate. The size of the particles prepared with the former solvent was bigger than the particles prepared with the latter. The entrapment efficiency was bigger when methylene chloride was used, 79.82% in comparison with 29.27% by using ethyl acetate. DSC and infrared studies showed that no strong chemical interaction between drug and polymer occurred. Release kinetics of praziquantel, used as a model drug, was governed not only by actual drug loading but also by particles size. The higher the drug content and the smaller the particle size resulted in faster drug release.
Resumo:
Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticulate drug carriers made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed. Praziquantel, a hydrophobic molecule, was entrapped into the nanoparticles with theoretical loading varying from 10 to 30% (w/w). This investigates the effects of some process variables on the size distribution of nanoparticles prepared by emulsion-solvent evaporation method. The results show that sonication time, PLGA and drug amounts, PVA concentration, ratio between aqueous and organic phases, and the method of solvent evaporation have a significant influence on size distribution of the nanoparticles. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The high incidence of tuberculosis around the world and the inability of BCG to protect certain populations clearly indicate that an improved vaccine against tuberculosis is needed. A single antigen, the mycobacterial heat shock protein hsp65, is sufficient to protect BALB/c mice against challenge infection when administered as DNA vaccine in a three-dose-based schedule. In order to simplify the vaccination schedule, we coencapsulated hsp65-DNA and trehalose dimicolate (TDM) into biodegradable poly(DL-lactide-co-glycolide) (PLGA) microspheres. BALB/c mice immunized with a single dose of DNA-hsp65/TDM-1oaded microspheres produced high levels of IgG2a subtype antibody and high amounts of IFN-gamma in the supernatant of spleen cell cultures. DNA-hsp65/TDM-loaded microspheres were also able to induce high IFN-gamma production in bulk lung cells from challenged mice and confer protection as effective as that attained after three doses of naked DNA administration. This new formulation also allowed a ten-fold reduction in the DNA dose when compared to naked DNA. Thus, this combination of DNA vaccine and adjuvants with immunomodulatory and carrier properties holds the potential for an improved vaccine against tuberculosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results. (c) 2007 Elsevicr Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)