979 resultados para poly(ADP-ribose)polymerase-1, mouse
Resumo:
Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.
Resumo:
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.
Resumo:
The role of oxidative stress and apoptosis has recently been recognized as an important determinant in the development of a variety of diseases known to man. The oncogene BCL-2 is known to regulate sensitivity to induction of apoptosis and appears to function in an antioxidant pathway by regulating glutathione. We have investigated various steps in the oxidative stress cascade to determine possible sites of action for BCL-2. The fluorescent probes H2DCFDA, dihydroethidium and cis-parinaric acid were used to quantitate generation of peroxides, superoxide and lipid peroxidation, respectively. While each of these agents was able to detect substantial increases in oxidative stress following exposure of cells to ionizing radiation, there was no significant difference between cells expressing high or low levels of BCL-2. Investigation of mitochondrial dysfunction during apoptosis revealed a possible site of bcl-2 intervention, but, analysis of kinetic events occurring during apoptosis suggested that the observed effect is not in the direct apoptotic effector pathway. When glutathione was studied, localization to the nucleus was observed in cells overexpressing BCL-2 that did not occur in cells lacking BCL-2. Additionally, nuclear accumulation of glutathione was sufficient to block granzyme b-mediated nuclear DNA fragmentation, poly (ADP-ribose) polymerase cleavage and caspase activity suggesting that nuclear accumulation of glutathione via a bcl-2 dependent process is functionally relevant to suppression of apoptosis. Thus, a model system emerges where BCL-2 is able to regulate a cell's ability to prevent apoptosis by modifying the cell's antioxidant systems at the organelle level to compensate for oxidative stresses placed upon it. ^
Resumo:
Anticancer agents target various subcellular components and trigger apoptosis in chemosensitive cells. We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham). Here we report the purification of this mixture into two biologically pure components called avicins that contain an acacic acid core with two acyclic monoterpene units connected by a quinovose sugar. We demonstrate that the mixture of triterpenoid saponins and avicins induce apoptosis in the Jurkat human T cell line by affecting the mitochondrial function. Avicin G induced cytochrome c release within 30–120 min in whole cells and within a minute in the cell-free system. Caspase inhibitors DEVD or zVAD-fmk had no effect on cytochrome c release, suggesting the direct action of avicin G on the mitochondria. Activation of caspase-3 and total cleavage of poly(ADP-ribose) polymerase (PARP) occurred between 2 and 6 h posttreatment with avicins by zVAD-fmk. Interestingly, in the treated cells no significant changes in the membrane potential preceded or accompanied cytochrome c release. A small decrease in the generation of reactive oxygen species (ROS) was measured. The study of these evolutionarily ancient compounds may represent an interesting paradigm for the application of chemical ecology and chemical biology to human health.
Resumo:
The serine protease granzyme B, which is secreted by cytotoxic cells, is one of the major effectors of apoptosis in susceptible targets. To examine the apoptotic mechanism of granzyme B, we have analyzed its effect on purified proteins that are thought to be components of death pathways inherent to cells. We demonstrate that granzyme B processes interleukin 1beta-converting enzyme (ICE) and the ICE-related protease Yama (also known as CPP32 or apopain) by limited proteolysis. Processing of ICE does not lead to activation. However, processing by granzyme B leads directly to the activation of Yama, which is now able to bind inhibitors and cleave the substrate poly(ADP-ribose) polymerase whose proteolysis is a marker of apoptosis initiated by several other stimuli. Thus ICE-related proteases can be activated by serine proteases that possess the correct specificity. Activation of pro-Yama by granzyme B is within the physiologic range. Thus the cytotoxic effect of granzyme B can be explained by its activation of an endogenous protease component of a programmed cell death pathway.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.
Resumo:
Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Resumo:
The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.
Resumo:
The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.
Resumo:
AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.
Resumo:
The PyAG1 gene, identified by the screening of a Plasmodium yoelii genomic DNA library with a rhoptry-specific Mab, encodes a protein with a zinc finger structure immediately followed by the consensus sequence of the Arf GAP catalytic site. The serum of mice immunized with the recombinant protein recognized specifically the rhoptries of the late infected erythrocytic stages. Blast analysis using the Genbank database gave the highest scores with four proteins presenting an Arf1 GAP activity. If presenting also this activity, the PyAG1 protein could be involved in the regulation of the secreted protein vesicular transport and, consequently, in the rhoptry biogenesis.