909 resultados para plate fit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the boundary layer flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the startup had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airports, whether publicly or privately owned or operated fill both public and private roles. They need to act as public infrastructure providers and as businesses which cover their operating costs. That leads to special governance concerns with respect to consumers and competitors which are only beginning to be addressed. These challenges are highlighted both by shifts in ownership status and by the expansion of roles performed by airports as passenger and cargo volumes continue to increase and as nearby urban areas expand outward towards airports. We survey five ways in which the regulatory shoe doesn‟t quite fit the needs. Our findings suggest that, while ad hoc measures limit political tension, new governance measures are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world of football is a matter of life and death for many of its fans, and has also attracted much sociological attention. Much of this scholarly work focuses on issues such as deviance, identity, globalisation and commodification (Elias and Dunning 1986; Giulianotti and Robertson 2009). More recently, there has been some evidence of a cultural approach to football and to the football shirt (Benzecry 2008). In this paper, we seek to develop this trend by examining the football shirt as a totem, and by understanding it as inserted into circuits of the sacred and the profane, and the authentic and the inauthentic. Through examples such as shirt throwing, badge kissing, shirt swapping and supporters‟ efforts to construct alternative, protest strips, we show that the football shirt is deeply embedded in narratives of authenticity, sacredness and profaneness. In doing so, we aim to represent football as a rich cultural practice, which involves secular rituals and performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved scaling analysis and direct numerical simulations are performed for the unsteady natural convection boundary layer adjacent to a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages: a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as the numerical results. Previous scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings perform very well with Rayleigh number and aspect ratio dependency. In this study, a modified Prandtl number scaling is developed using a triple layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the modified scaling performs considerably better than the previous scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All processes are modeled, all process metrics defined, all process support systems are set up; yet still, processes are not running smoothly and departmental silos are more present than ever. Both practitioners and academics tell the same story. A successful business process management (BPM) implementation goes beyond using the right methods and putting the right systems in place. In fact, an important success factor for BPM is establishing the right organizational culture, that is, a culture that supports the achievement and maintenance of efficient and effective business processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Property law is one of the key elements in any property-based degree program. In particular, an understanding of 'property law' is one of the required knowledge fields for inclusion in property programs accredited by professional institutes such as the Royal Institution of Chartered Surveyors, the Appraisal Institute and the Australian Property Institute. Despite the importance of property law as a cornerstone element of all property programs this aspect of the program is often approached from a more generic legal perspective with teaching resources used and pedagogical approach more aligned to the study of law that property. The specificity of this type of program is rarely adequately acknowledged. The question arises as to what the study of 'property law' entails and what the composition of a 'property law' subject should be. Replicating the methodology used by Placid and Weeks (2009) in their examination of the current composition of real estate law courses in the United States, this paper examines the current composition and pedagogical approach adopted by Australian universities based on the study of three Queensland property programs. In particular the curriculum, teaching resources used, assessment and engagement strategies are considered with a view to making improvements to the way these property law courses can be more effectively tailored to property students. It is anticipated that the outcomes of this paper will be of interest to all academics who are responsible for developing and delivering property law subjects and those who manage property programs in Australia and internationally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is found in the literature that the existing scaling results for the boundary layer thickness, velocity and steady state time for the natural convection flow over an evenly heated plate provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings provide a good prediction of two other governing parameters’ dependency, the Rayleigh number and the aspect ratio. Therefore, an improved scaling analysis using a triple-layer integral approach and direct numerical simulations have been performed for the natural convection boundary layer along a semi-infinite flat plate with uniform surface heat flux. This heat flux is a ramp function of time, where the temperature gradient on the surface increases with time up to some specific time and then remains constant. The growth of the boundary layer strongly depends on the ramp time. If the ramp time is sufficiently long, the boundary layer reaches a quasi steady mode before the growth of the temperature gradient is completed. In this mode, the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the ramp time is sufficiently short, the boundary layer develops differently, but after the wall temperature gradient growth is completed, the boundary layer develops as though the startup had been instantaneous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.