959 resultados para plant-growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The taxonomic status of a bacterium, strain NCCP-246(T), isolated from rhizosphere of Vigna mungo, was determined using a polyphasic taxonomic approach. The strain NCCP-246(T) can grow at 16-37 °C (optimum 32 °C), at pH ranges of 6-8 (optimum growth occurs at pH 7) and in 0-4 % (w/v) NaCl. Phylogenetic analysis based upon on 16S rRNA gene sequence comparison revealed that strain NCCP-246(T) belonged to genus Sphingobacterium. Strain NCCP-246(T) showed highest similarity to the type strain of Sphingobacterium canadense CR11(T) (97.67 %) and less than 97 % with other species of the genus. The DNA-DNA relatedness value of strain NCCP-246(T) with S. canadense CR11(T) and Sphingobacterium thalpophilum JCM 21153(T) was 55 and 44.4 %, respectively. The chemotaxonomic data revealed the major menaquinone as MK-7 and dominant cellular fatty acids were summed feature 3 [C16:1 ω7c/C16:1 ω6c] (37.07 %), iso-C15:0 (28.03 %), C16:0 (11.85 %), C17:0 cyclo (8.84 %) and C14:0 (2.42 %). The G+C content of the strain was 39.2 mol%. On the basis of DNA-DNA hybridization, phylogenetic analyses, physiological and, biochemical data, strain NCCP-246(T) can be differentiated from the validly named members of genus Sphingobacterium and thus represents as a new species, for which the name, Sphingobacterium pakistanensis sp. nov. is proposed with the type strain NCCP-246(T) (= JCM18974 (T) = KCTC 23914(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The greatest issue affecting the sustainability of broad acre cropping both environmentally and economically is the requirement of fertilizers. These are based on mined phosphorous or other mineral ores, ammonia produced through the Harbour-Bosch process and industrially manufactured potash. As global demand for fertilizers increases, the costs associated with the production for each of these major nutrients increases. Biofertilizers such as plant growth promoting bacteria (PGPB) are a possible biotechnology that could alleviate the need for addition of increasing amounts of fertilizers. These bacteria naturally occur in soils and aggressively colonize around plant roots and have been shown to have plant growth promoting effects. PGPB are known to influence plant growth by various direct and indirect mechanisms; while some can affect plant physiology directly by mimicking synthesis of plant hormones,others increase mineral availability and nitrogen content in soil. Here we review the previously characterized modes of action for enhancement of plant growth by PGPB such as nitrogen fixation, nutrient solubilization and production of auxins and enzymes, as well as discussing more recent proposed modes of action such as secondary metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to understand the biological role of Serratia quinivorans BXF1, a bacterium commonly found associated with Bursaphelenchus xylophilus, the plant parasitic nematode responsible for pine wilt disease. Therefore, we studied strain BXF1 effect in pine wilt disease. We found that strain BXF1 promoted in vitro nematode reproduction. Moreover, the presence of bacteria led to the absence of nematode chitinase gene (Bxcht-1) expression, suggesting an effect for bacterial chitinase in nematode reproduction. Nevertheless, strain BXF1 was unable to colonize the nematode interior, bind to its cuticle with high affinity or protect the nematode from xenobiotic stress. Interestingly, strain BXF1 was able to promote tomato and pine plant-growth, as well as to colonize its interior, thus, acting like a plant-growth promoting endophyte. Consequently, strain BXF1 failed to induce wilting symptoms when inoculated in pine shoot artificial incisions. This bacterium also presented strong antagonistic activities against fungi and bacteria isolated from Pinus pinaster. Our results suggest that B. xylophilus does not possess a strict symbiotic community capable of inducing pine wilt disease symptoms as previously hypothesized. We show that bacteria like BXF1, which possess plant-growth promoting and antagonistic effects, may be opportunistically associated with B. xylophilus, possibly acquired from the bacterial endophytic community of the host pine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degree to which vertebrate herbivores exploitatively compete for the same food plant may depend on the level of compensatory plant growth. Such compensation is higher when there is reduced density-dependent competition in plants after herbivore damage. Whether there is relief from competition may largely be determined by the life-history stage of plants under herbivory. Such stage-specific compensation may apply to seasonal herbivory on the clonal aquatic plant sago pondweed (Potamogeton pectinatus L.). It winters in sediments of shallow lakes as tubers that are foraged upon by Bewick's Swans (Cygnus columbianus bewickii Yarrell), whereas aboveground biomass in summer is mostly consumed by ducks, coots, and Mute Swans. Here, tuber predation may be compensated due to diminished negative density dependence in the next growth season. However, we expected lower compensation to summer herbivory by waterfowl and fish as density of aboveground biomass in summer is closely related to photosynthetic carbon fixation. In a factorial exclosure study we simultaneously investigated (1) the effect of summer herbivory on aboveground biomass and autumn tuber biomass and (2) the effect of tuber predation in autumn on aboveground biomass and tuber biomass a year later. Summer herbivory strongly influenced belowground tuber biomass in autumn, limiting food availability to Bewick's Swans. In contrast, tuber predation in autumn by Bewick's Swans had a limited and variable effect on P. pectinatus biomass in the following growth season. Whereas relief from negative density dependence largely eliminates effects of belowground herbivory by swans, aboveground herbivory in summer limits both above- and belowground plant biomass. Hence, there was an asymmetry in exploitative competition, with herbivores in summer reducing food availability for belowground herbivores in autumn, but not the other way around.