309 resultados para pins (jewelry)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface topography has been known to play an important role in the friction and transfer layer formation during sliding. In the present investigation, EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Pure Mg pins were scratched on these surfaces using an Inclined Scratch Tester to study the influence of directionality of surface grinding marks on coefficient of friction and transfer layer formation. Grinding angle (i.e., the angle between direction of scratch and grinding marks) was varied between 0 degrees and 90 degrees during the tests. Experiments were conducted under both dry and lubricated conditions. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the surface features that included the morphology of the transfer layer. It was observed that the average coefficient of friction and transfer layer formation depend primarily on the directionality of the grinding marks but were independent of surface roughness on the harder mating surface. In addition, a stick-slip phenomenon was observed, the amplitude of which depended both on the directionality of grinding marks and the surface roughness of the harder mating surface. The grinding angle effect on the coefficient of friction, which consists of adhesion and plowing components, was attributed to the variation of plowing component of friction. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction influences the nature of transfer layer formed at the interface between tool and metal during sliding. In the present investigation, experiments were conducted using “Inclined Scratch Tester” to understand the effect of surface texture of hard surfaces on coefficient of friction and transfer layer formation. EN8 steel flats were ground to attain surfaces of different textures with different roughness. Then super purity aluminium pins were scratched against the prepared steel flats. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the morphology of transfer layer. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the texture of hard surfaces, but independent of surface roughness of hard surfaces. It was observed that on surfaces that promote plane strain conditions near the surface, the transfer of material takes place due to the plowing action of the asperities. But, on a surface that promotes plane stress conditions the transfer layer was more due to the adhesion component of friction. It was observed that the adhesion component increases for surfaces that have random texture but was constant for the other surfaces

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear tests were done in a pin-on-disc machine by sliding MoSi2 pins against hard-steel discs in a normal load range of 5-140 N and a speed of 0.5 m/s under nominally dry conditions in the ambient. The specific wear rate of the pin undergoes two transitions: severe to mild at low load and mild to severe at high load. The mild-wear domain is distinguished by the formation of a protective mechanically mixed layer of steel and its oxides, transferred from the counterface in particulate form. Increasing the hardness by densification and TiB2 reinforcement lowers the specific wear rate and expands the mild-wear load domain. However, even when the volume wear rate is normalised with respect to the real contact area (load/hardness) the non-dimensional wear factor is still seen to decrease with densification and reinforcement. This indicates that fracture toughness may also play an important role in determining the wear-resistance of these materials. The surface coverage on the pin by the mechanically mixed layer increases with densification and reinforcement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate, reliable and economical methods of determining stress distributions are important for fastener joints. In the past the contact stress problems in these mechanically fastened joints using interference or push or clearance fit pins were solved using both inverse and iterative techniques. Inverse techniques were found to be most efficient, but at times inadequate in the presence of asymmetries. Iterative techniques based on the finite element method of analysis have wider applications, but they have the major drawbacks of being expensive and time-consuming. In this paper an improved finite element technique for iteration is presented to overcome these drawbacks. The improved iterative technique employs a frontal solver for elimination of variables not requiring iteration, by creation of a dummy element. This automatically results in a large reduction in computer time and in the size of the problem to be handled during iteration. Numerical results are compared with those available in the literature. The method is used to study an eccentrically located pin in a quasi-isotropic laminated plate under uniform tension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R (a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Delta (a), correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pin-loaded lugs were analysed in the presence of cracks emanating from circular holes. The analysis presents a unified treatment of interference, push or clearance fit pins. Both metallic (isotropic) and composite (orthotropic) plates were dealt with. The finite element model used special singular six-noded quadrilateral elements at the crack tip. The non-linear load contact behaviour at the pin-hole interface was dealt with by an inverse technique. A modified crack closure integral (MCCI) technique was used to evaluate the strain energy release rates (SERRs) and stress intensity factors (SIFs) at the crack tips. Numerical results are presented showing the non-linear variation of SIF with applied stress, and the influence of the amount of interference or clearance and the interfacial friction on SIF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding of alumina (87%) pins against a hardened steel disk over a range of pressures (3.3-30.0 MPa) and speeds (0.1-12.0 ms(-1)) has been studied. Four different regions (R1, R2, R3, and R4) of friction as a function of speed have been identified. R1 and RS exhibit single-valued friction while in R2 and R4 the friction exhibits dual behavior. The speed range over which these regions prevail is sensitive to the pressure. R1 and R2 are low-speed and low-temperature regions, and in both, metal transfer and formation and compaction of gamma-Fe2O3 occur. R3 and R4 are associated with high speeds and high interface temperatures. Formation of FeO, FeAl2O4, and FeAlO3 has been observed. The implications of the tribochemical interactions on friction and wear characteristics are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding wear characteristics and mechanisms of structural ceramics, namely Al2O3, zirconia-toughened alumina, tetragonal zirconia polycrystals (TZP) and Si3N4 against a steel counterface are influenced by mechanical and tribochemical interactions, specific to the combinations studied. The present paper studies the role of the disc in the sliding wear process of the above ceramics. Experiments were conducted at a pressure of 15.5 MPa between 0.1 and 12.0 m s(-1) with ceramic pins sliding against an EN-24 steel disc. Except in the case of TZP, the disc morphology is sensitive to variations in speed rather than to the pin material. The disc track is (i) mildly abraded at low speeds (about 0.1-0.75 m s(-1)), (ii) severely abraded at intermediate speeds (about 1.0-3.0 m s(-1)), (iii) covered with black patches at high speeds (about 4.0-6.0 m s(-1)) and (iv) completely black at very high speeds (about 7.0-12.0 m s(-1)). In the case of TZP, although black patches appear, transfer of TZP onto the disc surface and high wear of TZP occurs at 4.0 m s(-1). The order of the wear of the disc estimated from profilometric measurements is the same for all the ceramics. Except for Si3N4, the onset of wear of the ceramics is associated with the appearance of deep 'V' grooves on either side of the profile of the disc track. This can be explained on the basis of the thermal and hardness variations. Although other interaction products specific to the ceramic pin are present, the formation of iron oxides dominates the wear of the disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding tests were conducted, in air, of YTZP ceramic pins against steel discs at an applied pressure of 15.5 MPa over a speed range of 0.3 to 4.0 ms(-1). Pin wear was not detectable until 2.0 m s(-1), after which a finite but small wear rate was observed at 3.0 m s(-1), accompanied by a red glow at the contacting surface. A transition in wear behaviour and friction (mu) occurred at 4.0 ms(-1), increasing the former by over two orders of magnitude. Both mu and wear behaviour changed with time at 4.0 m s(-1). During initial periods mu was high and wear rate increased steadily with time accompanied by ceramic transfer onto the disc, which increased with time. When disc coverage exceeds a certain threshold value, mu decreased rapidly and the wear rate stabilized at a very high value. Metal transfer was not observed at any speed. High surface temperatures brought about significant adhesion between TZP and steel and this together with enhanced plastic deformation brought about a transition in wear behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OFHC copper pins with 10 ppm oxygen were slid against alumina at a load of 50 N and sliding speeds of 0.1 ms(-1) to 4.0 ms(-1) The wear characteristics of copper were related to the strain rate response of copper under uniaxial compression between strain rates of 0.1 s(-1) and 100 s(-1) and temperatures in the range of 298 K to 673 K. It is seen that copper undergoes flow banding at strain rates of 1 s(-1) up to a temperature of 523 K, which is the major instability in the region tested. These flow bands are regions of crack nucleation. The strain rates and temperatures existing in the subsurface of copper slid against alumina are estimated and superimposed on the strain rate response map of copper. The superposition shows that the subsurface of copper slid at low velocities is likely to exhibit flow band instability induced cracking. It is suggested that this is the,reason for the observed high wear rate at low velocities. The subsurface deformation with increasing velocity becomes more homogeneous. This reduces the wear rate. At velocities >2 ms(-1) there is homogenous flow and extrusion of thin (10 mu m) bands of material out of the trailing edge. This results in the gradual increase of wear rate with increasing velocity above 2.0 ms(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, basic studies were conducted using Inclined pin-on-plate sliding Tester to understand the role of surface texture of hard material against soft materials during sliding. Soft materials such as Al-Mg alloy, pure Al and pure Mg were used as pins and 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in tests. It was observed that the transfer layer formation and the coefficient of friction which has two components, namely adhesion and plowing component, are controlled by the surface texture of harder material. For the case of Al-Mg alloy, stick-slip phenomenon was absent under both dry and lubricated conditions. However, for the case of Al, it was observed only under lubricated conditions while for the case of Mg, it was observed under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The plowing component of friction was highest for the surface that promotes plane strain conditions near the surface and was lowest for the surface that promotes plane stress conditions near the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.