976 resultados para phytophagous insects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insect species vary in their degree of foraging specialisation, with many bee species considered polyphagic (polylectic). Wild, non-managed bee species vary in their conservation status, and species-specific biological traits such as foraging specialisation may play an important role in determining variance in population declines. Current agri-environment schemes (AESs) prescribe the introduction of flower seed mixes for agricultural systems to aid the conservation of wild bees. However, the extent to which flower combinations adequately meet bee foraging requirements is poorly known. We quantitatively assessed pollen use and selectivity using two statistical approaches: Bailey's Intervals and Compositional Analysis, in an examplar species, a purportedly polylectic and rare bee, Colletes floralis, across 7 sites through detailed analysis of bee scopal pollen loads and flower abundance. Both approaches provided good congruence, but Compositional Analysis was more robust to small sample sizes. We advocate its use for the quantitative determination of foraging behaviour and dietary preference. Although C. floralis is polylectic, it showed a clear dietary preference for plants within the family Apiaceae. Where Apiaceae was uncommon, the species exploited alternative resources. Other plant families, such as the Apiaceae, could be included, or have their proportion increased in AES seed mixes, to aid the management of C. floralis and potentially other wild solitary bees of conservation concern. © 2011 The Authors. Insect Conservation and Diversity © 2011 The Royal Entomological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Countless numbers of insects migrate within and between continents every year, and yet we know very little about the ultimate reasons and proximate mechanisms that would explain these mass movements. Here we suggest that perhaps the most important reason for insects to migrate is to hedge their reproductive bets. By spreading their breeding efforts in space and time, insects distribute their offspring over a range of environmental conditions. We show how the study of individual long-distance movements of insects may contribute to a better understanding of migration. In the future, advances in tracking methods may enable the global surveillance of large insects such as desert locusts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some animals change their feeding behaviour when infected with parasites, seeking out substances that enhance their ability to overcome infection. This 'self-medication' is typically considered to involve the consumption of toxins, minerals or secondary compounds. However, recent studies have shown that macronutrients can influence the immune response and that pathogen-challenged individuals can self-medicate by choosing a diet rich in protein and low in carbohydrates. Infected individuals might also reduce food intake when infected (i.e. illness-induced anorexia). Here, we examine macronutrient self-medication and illness-induced anorexia in caterpillars of the African armyworm (Spodoptera exempta) by asking how individuals change their feeding decisions over the time course of infection with a baculovirus. We measured self-medication behaviour across several full-sib families to evaluate the plasticity of diet choice and underlying genetic variation. Larvae restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a low P : C ratio. When allowed free choice, virus-challenged individuals chose a higher protein diet than controls. Individuals challenged with either a lethal or sublethal dose of virus increased the P : C ratio of their chosen diets. This was mostly due to a sharp decline in carbohydrate intake, rather than an increased intake of protein, reducing overall food intake, consistent with an illness-induced anorexic response. Over time the P : C ratio of the diet decreased until it matched that of controls. Our study provides the clearest evidence yet for dietary self-medication using macronutrients and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection. The strikingly similar behaviour shown by different families suggests that self-medication is phenotypically plastic and not a consequence of genetically based differences in diet choice between families. © 2013 British Ecological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The population density and age structure of two species of heather psyllid Strophingia ericae and Strophingia cinereae, feeding on Calluna vulgaris and Erica cinerea, respectively, were sampled using standardized methods at locations throughout Britain. Locations were chosen to represent the full latitudinal and altitudinal range of the host plants.

2. The paper explains how spatial variation in thermal environment, insect life-history characteristics and physiology, and plant distribution, interact to provide the mechanisms that determine the range and abundance of Strophingia spp.

3. Strophingia ericae and S. cinereae, despite the similarity in the spatial distribution patterns of their host plants within Britain, display strongly contrasting geographical ranges and corresponding life-history strategies. Strophingia ericae is found on its host plant throughout Britain but S. cinereae is restricted to low elevation sites south of the Mersey-Humber line and occupies only part of the latitudinal and altitudinal range of its host plant. There is no evidence to suggest that S. ericae has reached its potential altitudinal or latitudinal limit in the UK, even though its host plant appears to reach its altitudinal limit.

4. There was little difference in the ability of the two Strophingia spp. to survive shortterm exposure to temperatures as low as - 15 degrees C and low winter temperatures probably do not limit distribution in S. cinereae.

5. Population density of S. ericae was not related to altitude but showed a weak correlation with latitude. The spread of larval instars present at a site, measured as an index of instar homogeneity, was significantly correlated with a range of temperature related variables, of which May mean temperature and length of growing season above 3 degrees C (calculated using the Lennon and Turner climatic model) were the most significant. Factor analysis did not improve the level of correlation significantly above those obtained for single climatic variables. The data confirmed that S. ericae has a I year life cycle at the lowest elevations and a 2 year life cycle at the higher elevations. However, there was no evidence, as previously suggested, for an abrupt change from a one to a 2 year life cycle in S. ericae with increasing altitudes or latitudes.

6. By contrast with S. ericae, S. cinereae had an obligatory 1 year life cycle, its population decreased with altitude and the index of instar homogeneity showed little correlation with single temperature variables. Moreover, it occupied only part of the range of its host plant and its spatial distribution in the UK could be predicted with 96% accuracy using selected variables in discriminant analysis.

7. The life histories of the congeneric heather psyllids reflect adaptations that allow them to exploit host plants with different distributions in climatic and thereby geographical space. Strophingia ericae has the flexible life history that enables it to exploit C. vulgaris throughout its European boreal temperate range. Strophingia cinereae has a less flexible life history and is adapted for living on an oceanic temperate host. While the geographic ranges of the two Strophingia spp. overlap within the UK, the psyllids appear to respond differently to variation in their thermal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con una mezcla de ciencia y pasatiempos se introduce a los niños en el mundo de los insectos para aprender cómo viven, cómo se alimentan, cómo se reproducen y crecen, cómo se defienden, cómo se mueven y el posible peligro para los seres humanos. Describe diecisiete insectos, entre otros, saltamontes, avispas, libélulas y mantis. El texto tiene dos niveles de dificultad de comptrensión y dos tamaños de letra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hace una introducción al mundo natural. Se describen algunos invertebrados para luego enfocar en un primer plano los detalles más interesantes y ver cómo la naturaleza los ha diseñado para su vida. Para niños hasta los siete años.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrándose en las principales familias de insectos, esta guía de insectos, arañas y otros artrópodos terrestres del todo el mundo, se ocupa de la diversidad de esta clase. Se examinan los veintinueve órdenes de insectos, así como una selección representativa de las arañas y otros artrópodos terrestres de todo el mundo, incluyendo características físicas, ciclo de vida, hábitat y estadios larvales. Tiene índice y fotografías de más de quinientas cincuenta familias de insectos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of atmospheric science are relevant to a range of themes within science and society; application to entomology was the main focus of this meeting organised by Dr Curtis Wood (University of Reading). This meeting was held jointly with the Royal Entomological Society. The talks were designed to appeal to the broader scientific community by showcasing topics near the join of the two disciplines. The audience heard about exciting topics within weather and climate change, how they are applied to entomological science and how insects can be used to advance atmospheric science. The meeting included the 2009 Margary Lecture given by Prof. Philip Mellor from the Institute for Animal Health (IAH) at Pirbright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi have a variety of effects on foliar-feeding insects, with the majority of these being positive, although reports of negative and null effects also exist. Virtually all previous experiments have used mobile insects confined in cages and have studied the effects of one, or at most two, species of mycorrhizae on one species of insect. The purpose of this study was to introduce a greater level of realism into insect-mycorrhizal experiments, by studying the responses of different insect feeding guilds to a variety of AM fungi. We conducted two experiments involving three species of relatively immobile insects (a leaf-mining and two seed-feeding flies) reared in natural conditions on a host (Leucanthemum vulgare). In a field study, natural levels of AM colonization were reduced, while in a phytometer trial, we experimentally colonized host plants with all possible combinations of three known mycorrhizal associates of L. vulgare. In general, AM fungi increased the stature (height and leaf number) and nitrogen content of plants. However, these effects changed through the season and were,dependent on the identity of the fungi in the root system. AM fungi increased host acceptance of all three insects and larval performance of the leaf miner, but these effects were also season- and AM species-dependent. We suggest that the mycorrhizal effect on the performance of the leaf miner is due to fungal-induced changes in host-plant nitrogen content, detected by the adult fly. However, variability in the effect was apparent, because not all AM species increased plant N content. Meanwhile, positive effects of mycorrhizae were found on flower number and flower size, and these appeared to result in enhanced infestation levels by the seed-feeding insects. The results show that AM fungi exhibit ecological specificity, in that different. species have different effects on host-plant growth and chemistry and the performance of foliar-feeding insects. Future studies need to conduct experiments that use ecologically realistic combinations of plants and fungi and allow insects to be reared in natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer droughts are predicted to increase in severity and frequency in the United Kingdom, due to climate change. Few studies have addressed the impacts of drought on interactions between species, and the majority have focussed on increases in CO2 concentration and changes in temperature. Here, the effect of experimental summer drought on the strength of the plant-mediated interaction between leaf-mining Stephensia brunnichella larvae and root-chewing Agriotes larvae was investigated. Agriotes larvae reduced the abundance and performance of S. brunnichella feeding on a mutual host plant, Clinopodium vulgare, as well as the rate of parasitism of the leaf-miner. The interaction did not, however, occur on plants subjected to a severe drought treatment, which were reduced in size. Changes to summer rainfall, due to climate change, may therefore reduce the occurrence of plant-mediated interactions between insect herbivores.