921 resultados para physiological constraint
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.
Resumo:
Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6-28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.
Resumo:
We tested the capacity of several published multispectral indices to estimate the nitrogen nutrition of wheat canopies grown under different levels of water supply and plant density and derived a simple canopy reflectance index that is greatly independent of those factors. Planar domain geometry was used to account for mixed signals from the canopy and soil when the ground cover was low. A nitrogen stress index was developed, which adjusts shoot %N for plant biomass and area, thereby accounting for environmental conditions that affect growth, such as crop water status. The canopy chlorophyll content index (CCCi) and the modified spectral ratio planar index (mSRPi) could explain 68 and 69% of the observed variability in the nitrogen nutrition of the crop as early as Zadoks 33, irrespective of water status or ground cover. The CCCi was derived from the combination of 3 wavebands 670, 720 and 790 nm, and the mSRPi from 445, 705 and 750 nm, together with broader bands in the NIR and RED. The potential for their spatial application over large fields/paddocks is discussed.
Resumo:
Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully lastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248-348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to beta-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.
Resumo:
The Game Sense coaching approach emphasises the modification of game elements or the development of modified games to achieve learning outcomes. In this article we will introduce the constraints-led approach to learning and demonstrate how the theory can underpin the design of games lessons ensuring that teachers give themselves the best chance of satisfying the skill acquisition and psychological needs of every child in PE.
Resumo:
Premature or abnormal softening of persimmon fruit within 3-7 days after harvest is a major physiological problem of non-astringent persimmon cultivars grown in subtropical regions of Australia. Up to 30% of consignments may soften rapidly frequently overnight, often resulting in the flesh becoming very soft, completely translucent, and impossible to handle. Incidence of premature soft fruit can vary with season and production location. To study the incidence of this problem, we conducted surveys of fruit harvested from five environmentally-diverse regions of Australia over a two-year period. We found wide variation in the rate of both premature softening and normal softening with differences of up 37 days between orchards in percentage of fruit reaching 50% soft. We found that the rate of fruit softening was exacerbated by lower calcium concentrations at fruit set, shorter fruit development periods and heavier rainfall during the fruit development period. The implications of our findings, in terms of orchard management, export and domestic marketing strategies are discussed.
Resumo:
Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control (<8), 15, 30, and 45 ppm, on the physiology and behavior of steers were recorded. The animals were held for 12 d under a micro-climate and stocking density similar to shipboard conditions experienced on voyages from Australia to the Middle East during the northern hemispheric summer. In bronchoalveolar lavage samples, ammonia increased (P < 0.05) macrophage activity in proportion to NH3 concentration and it increased (P < 0.05) neutrophil percentage at 30 and 45 ppm, indicating active pulmonary inflammation. It also increased (P < 0.05) lacrimation, nasal secretions and coughing, particularly at 45 ppm, indicating that the NH3 was irritating the mucous membranes of the eyes, nasal cavity and respiratory tract. Ammonia had no effect (P > 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers.
Resumo:
Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.
Resumo:
In Neurospora crassa, the activity of δ-aminolevulinate dehydratase, the second and rate-limiting enzyme of the heme-biosynthetic pathway, is low in normal cells compared to the activity detected in plants, animals and bacteria. The activity is almost undetectable when Neurospora crassa is grown under iron-deficient conditions. The enzyme activity increases strikingly on addition of iron to iron-deficient cultures. This increase can be blocked by the addition of protoporphyrin, the penultimate product of the heme-biosynthetic pathway, to the cultures. The question whether iron directly acts at the genetic level or acts merely by removing protoporphyrin, converting the latter into heme prosthetic groups of hemoproteins, has been investigated by studying the effect of inhibition of heme synthesis on the induction of δ-aminolevulinate dehydratase. It has been found that treatments with levulinic acid or cyanide which inhibit the formation of the porphyrin moiety, induce δ-aminolevulinate dehydratase, whereas treatments which inhibit at a step after protoporphyrin formation (iron-deficiency and cobalt treatment) repress the enzyme. The endogenous levels of protoporphyrin are strictly controlled: a decrease below the optimum level causing induction and an increase above the optimum level leading to repression of δ-aminolevulinate dehydratase. Levulinic acid and cyanide can induce the enzyme in iron-deficient cultures in the absence of added iron, indicating that the metal iron acts only by converting protoporphyrin to heme fixed in hemoproteins in Neurospora crassa. Therefore it is suggested that protoporphyrin is the physiological regulator of δ-aminolevulinate dehydratase in Neurospora crassa.
Resumo:
Research on the physiological response of crop plants to drying soils and subsequent water stress has grouped plant behaviours as isohydric and anisohydric. Drying soil conditions, and hence declining soil and root water potentials, cause chemical signals—the most studied being abscisic acid (ABA)—and hydraulic signals to be transmitted to the leaf via xylem pathways. Researchers have attempted to allocate crops as isohydric or anisohydric. However, different cultivars within crops, and even the same cultivars grown in different environments/climates, can exhibit both response types. Nevertheless, understanding which behaviours predominate in which crops and circumstances may be beneficial. This paper describes different physiological water stress responses, attempts to classify vegetable crops according to reported water stress responses, and also discusses implications for irrigation decision-making.
Resumo:
This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.