998 resultados para physics.plasm-ph
Resumo:
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students’ success. When student actions / outcomes did not meet their teachers’ expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, 2007). Over the course of the EEI projects, the teachers’ practices changed along with their emotional states and their students’ achievements. We account for similarities and differences in the teachers’ emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike.
Resumo:
The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.
Resumo:
A process for making aluminosilicates of zeolite N structure comprising the steps of: (i) combining a water soluble monovalent cation, a solution of hydroxyl anions and an aluminosilicate to form a resultant mixture having a pH greater than 10 and a H.sub.2O/Al.sub.2O.sub.3 ratio in the range 30 to 220; (ii) heating the resultant mixture to a temperature of between 50.degree. C. and boiling point of the mixture for a time between 1 minute and 100 hours until a crystalline product of zeolite N structure is formed as determined by X-ray diffraction or other suitable characteristic; and (iii) separating the zeolite N product as a solid from the mixture.
Resumo:
Lending teachers for two-year periods is one of the ways in which Cuba has been able to collaborate with other countries in their efforts to improve educational planning and practice. My field research in 2001 in Jamaica (March and November) and in Namibia (December) enabled me to obtain information about how Cuban teachers are being utilized, and about the educational implications of this project. In Jamaica, I interviewed 15 Cuban teachers in several schools and one in the vocational institute, as well as the Cuban project supervisor in charge of the 51 Cuban teachers. I also talked with officials at the Jamaican Ministry of Education to obtain an idea of the developmental needs in the various subjects that the Cubans had been asked to teach. In Namibia I interviewed personnel in the National Sports Directorate and the Cuban manager in charge of the sports education project. The chapter draws on these interviews to build a picture of how the program of collaboration is organized, and considers its postcolonial significance, in theory and in practice, as an example of South-South collaboration. The chapter contributes to a multilevel style of comparative education analysis based on microlevel qualitative fieldwork within a framework that compares cross-cultural issues and national policies. The discussion of the educational situation of the host countries suggests why Cuban teachers can contribute to meeting curricular needs, particularly in the areas of the sciences, mathematics, Spanish, and sports. The friendly and joking remark of one of the Cuban teachers to school students in Jamaica: “You help me improve my English, I’ll teach you Physics!” highlights the reciprocal potential of these cooperation projects, discussed in several chapters of this book.
Resumo:
Magnetic zeolite NaA with different Fe3O4 loadings was prepared by hydrothermal synthesis based on metakaolin and Fe3O4. The effect of added Fe3O4 on the removal of ammonium by zeolite NaA was investigated by varying the Fe3O4 loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe3O4 apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudosecond-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe3O4. According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution.
Resumo:
Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.
Resumo:
Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants.
Resumo:
This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.
Resumo:
Pretreatments of sugarcane bagasse for saccharification using different acid-catalysed imidazolium IL solutions (containing 20% water) at 130 °C for 30 min were investigated. At the same solution pH, pretreatment effectiveness in terms of glucan digestibility, delignification and xylan removal were similar for aqueous 1-butyl-3-methylimidazolium methane sulfonate (BMIMCH3SO3), 1-butyl-3-methylimidazolium methyl sulfate (BMIMCH3SO4), 1-ethyl-3-methylimidazolium chloride (EMIMCl) and 1-butyl-3-methylimidazolium chloride (BMIMCl). Decreasing solution pH of aqueous IL systems from 6.0 to 0.4 increased bagasse delignification and xylan removal, and as a result, improved glucan digestibility. The glucan digestibilities for bagasse samples pretreated by IL solutions with pH ≤ 0.9 were > 90% after 72 h of enzymatic hydrolysis. Without pH adjustment, the effectiveness of these aqueous IL solutions (except BMIMCH3SO3 because of its low natural pH of 0.9) to deconstruct the biomass was poor and the glucan digestibilities of pretreated bagasse samples were < 20%. These results show that pretreatment effectiveness of aqueous imidazolium ILs can simply be estimated from solution pH rather than hydrogen bond basicity (β) of the IL solution.
Resumo:
Composite TiO2/acid leached serpentine tailings (AST) were synthesized through the hydrolysis–deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energydispersive X-ray spectrometry (EDS), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and surface area measurement (BET). The XRD analysis showed that TiO2 coated on the surface of acid leached serpentine tailings was mixed crystal phases of rutile and anatase, the grain size of which is 10–30 nm. SEM, TEM, and EDS analysis exhibited that nano-TiO2 particles were deposited on the surface and internal cavities of acid leaching serpentine tailings. The XPS and FT-IR analysis demonstrated that the coating process of TiO2 on AST was a physical adsorption process. The large specific surface area, porous structure, and plentiful surface hydroxyl group of TiO2/AST composite resulted in the high adsorption capacity of Cr(VI). The experimental results demonstrated that initial concentration of Cr(VI), the amount of the catalyst, and pH greatly influenced the removal efficiency of Cr(VI). The removal kinetics of Cr(VI) at a relative low initial concentration was fitted well with Langmuir–Hinshelwood kinetics model with R2 value of about unity. The asprepared composites exhibited strong adsorption and photocatalytic capacity for the removal of Cr(VI), and the possible photocatalytic reduction mechanism was studied. The photodecomposition of Cr(VI) was as high as 95% within 2 h, and the reusability of the photocatalysis was proven.
Resumo:
The influence of pH on interfacial energy and wettability distributed over the phospholipid bilayer surface were studied, and the importance of cartilage hydrophobicity (wettability) on the coefficient of friction (f) was established. It is argued that the wettability of cartilage signifi antly depends on the number of phospholipid bilayers acting as solid lubricant; the hypothesis was proven by conducting friction tests with normal and lipid- depleted cartilage samples. A lamellar-roller-bearing lubrication model was devised involving two mechanisms: (i) lamellar frictionless movement of bilayers, and (ii) roller-bearing lubrication mode through structured synovial fluid, which operates when lamellar spheres, liposomes and macromolecules act like a roller-bearing situated between two cartilage surfaces in effective biological lubrication.
Resumo:
The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.
Resumo:
Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO2/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO2/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 104 Ω cm to 2.533 × 103 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated that there were a large number of the hydroxyl groups on the surface of wollastonite. This is beneficial to the heterogeneous nucleation reaction. Through morphology, EDS and XPS analysis, the surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains the distribution of which was uniform.