959 resultados para physical layer network coding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a thorough experimental study on key generation principles, i.e. temporal variation, channel reciprocity, and spatial decorrelation, via a testbed constructed by using wireless open-access research platform (WARP). It is the first comprehensive study through (i) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber and an indoor office environment, which represents little, rich, and moderate multipath, respectively; (ii) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; (iii) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial for key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cyber physical system (CPS), computational resources and physical resources are strongly correlated and mutually dependent. Cascading failures occur between coupled networks, cause the system more fragile than single network. Besides widely used metric giant component, we study small cluster (small component) in interdependent networks after cascading failures occur. We first introduce an overview on how small clusters distribute in various single networks. Then we propose a percolation theory based mathematical method to study how small clusters be affected by the interdependence between two coupled networks. We prove that the upper bounds exist for both the fraction and the number of operating small clusters. Without loss of generality, we apply both synthetic network and real network data in simulation to study small clusters under different interdependence models and network topologies. The extensive simulations highlight our findings: except the giant component, considerable proportion of small clusters exists, with the remaining part fragmenting to very tiny pieces or even massive isolated single vertex; no matter how the two networks are tightly coupled, an upper bound exists for the size of small clusters. We also discover that the interdependent small-world networks generally have the highest fractions of operating small clusters. Three attack strategies are compared: Inter Degree Priority Attack, Intra Degree Priority Attack and Random Attack. We observe that the fraction of functioning small clusters keeps stable and is independent from the attack strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The converge-cast in wireless sensor networks (WSNs) is widely applied in many fields such as medical applications and the environmental monitoring. WSNs expect not only providing routing with high throughput but also achieving efficient energy saving. Network coding is one of the most promising techniques to reduce the energy consumption. By maximizing the encoding number, the message capacity per package can be extended to the most efficient condition. Thus, many researchers have focused their work on this field. Nevertheless, the packages sent by the outer nodes need to be temporary stored and delayed in order to maximize the encoding number. To find out the balance between inserting the delay time and maximizing the encoding number, a Converge-cast Scheme based on data collection rate prediction (CSRP) is proposed in this paper. To avoid producing the outdated information, a prediction method based on Modifying Index Curve Model is presented to deal with the dynamic data collection rate of every sensor in WSNs. Furthermore, a novel coding conditions based on CDS is proposed to increase the coding opportunity and to solve the collision problems. The corresponding analysis and experimental results indicate that the feasibility and efficiency of the CSRP is better than normal conditions without the prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese descreve uma framework de trabalho assente no paradigma multi-camada para analisar, modelar, projectar e optimizar sistemas de comunicação. Nela se explora uma nova perspectiva acerca da camada física que nasce das relações entre a teoria de informação, estimação, métodos probabilísticos, teoria da comunicação e codificação. Esta framework conduz a métodos de projecto para a próxima geração de sistemas de comunicação de alto débito. Além disso, a tese explora várias técnicas de camada de acesso com base na relação entre atraso e débito para o projeto de redes sem fio tolerantes a atrasos. Alguns resultados fundamentais sobre a interação entre a teoria da informação e teoria da estimação conduzem a propostas de um paradigma alternativo para a análise, projecto e optimização de sistemas de comunicação. Com base em estudos sobre a relação entre a informação recíproca e MMSE, a abordagem descrita na tese permite ultrapassar, de forma inovadora, as dificuldades inerentes à optimização das taxas de transmissão de informação confiáveis em sistemas de comunicação, e permite a exploração da atribuição óptima de potência e estruturas óptimas de pre-codificação para diferentes modelos de canal: com fios, sem fios e ópticos. A tese aborda também o problema do atraso, numa tentativa de responder a questões levantadas pela enorme procura de débitos elevados em sistemas de comunicação. Isso é feito através da proposta de novos modelos para sistemas com codificação de rede (network coding) em camadas acima da sua camada física. Em particular, aborda-se a utilização de sistemas de codificação em rede para canais que variam no tempo e são sensíveis a atrasos. Isso foi demonstrado através da proposta de um novo modelo e esquema adaptativo, cujos algoritmos foram aplicados a sistemas sem fios com desvanecimento (fading) complexo, de que são exemplos os sistemas de comunicação via satélite. A tese aborda ainda o uso de sistemas de codificação de rede em cenários de transferência (handover) exigentes. Isso é feito através da proposta de novos modelos de transmissão WiFi IEEE 801.11 MAC, que são comparados com codificação de rede, e que se demonstram possibilitar transferência sem descontinuidades. Pode assim dizer-se que esta tese, através de trabalho de análise e de propostas suportadas por simulações, defende que na concepção de sistemas de comunicação se devem considerar estratégias de transmissão e codificação que sejam não só próximas da capacidade dos canais, mas também tolerantes a atrasos, e que tais estratégias têm de ser concebidas tendo em vista características do canal e a camada física.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptographic keys are necessary to secure communications among mesh clients in wireless mesh networks. Traditional key establishment schemes are implemented at higher layers, and the security of most such designs relies on the complexity of computational problems. Extracting cryptographic keys at the physical layer is a promising approach with information-theoretical security. But due to the nature of communications at the physical layer, none of the existing designs supports key establishment if communicating parties are out of each other's radio range, and all schemes are insecure against man-in-the-middle attacks. This paper presents a cross-layer key establishment scheme where the established key is determined by two partial keys: one extracted at the physical layer and the other generated at higher layers. The analysis shows that the proposed cross-layer key establishment scheme not only eliminates the aforementioned shortcomings of key establishment at each layer but also provides a flexible solution to the key generation rate problem. © 2014 Springer International Publishing Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to huge popularity of portable terminals based on Wireless LANs and increasing demand for multimedia services from these terminals, the earlier structures and protocols are insufficient to cover the requirements of emerging networks and communications. Most research in this field is tailored to find more efficient ways to optimize the quality of wireless LAN regarding the requirements of multimedia services. Our work is to investigate the effects of modulation modes at the physical layer, retry limits at the MAC layer and packet sizes at the application layer over the quality of media packet transmission. Interrelation among these parameters to extract a cross-layer idea will be discussed as well. We will show how these parameters from different layers jointly contribute to the performance of service delivery by the network. The results obtained could form a basis to suggest independent optimization in each layer (an adaptive approach) or optimization of a set of parameters from different layers (a cross-layer approach). Our simulation model is implemented in the NS-2 simulator. Throughput and delay (latency) of packet transmission are the quantities of our assessments. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current IEEE 802.11 wireless networks are vulnerable to session hijacking attacks as the existing standards fail to address the lack of authentication of management frames and network card addresses, and rely on loosely coupled state machines. Even the new WLAN security standard - IEEE 802.11i does not address these issues. In our previous work, we proposed two new techniques for improving detection of session hijacking attacks that are passive, computationally inexpensive, reliable, and have minimal impact on network performance. These techniques utilise unspoofable characteristics from the MAC protocol and the physical layer to enhance confidence in the intrusion detection process. This paper extends our earlier work and explores usability, robustness and accuracy of these intrusion detection techniques by applying them to eight distinct test scenarios. A correlation engine has also been introduced to maintain the false positives and false negatives at a manageable level. We also explore the process of selecting optimum thresholds for both detection techniques. For the purposes of our experiments, Snort-Wireless open source wireless intrusion detection system was extended to implement these new techniques and the correlation engine. Absence of any false negatives and low number of false positives in all eight test scenarios successfully demonstrated the effectiveness of the correlation engine and the accuracy of the detection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we introduce convolutional codes for network-error correction in the context of coherent network coding. We give a construction of convolutional codes that correct a given set of error patterns, as long as consecutive errors are separated by a certain interval. We also give some bounds on the field size and the number of errors that can get corrected in a certain interval. Compared to previous network error correction schemes, using convolutional codes is seen to have advantages in field size and decoding technique. Some examples are discussed which illustrate the several possible situations that arise in this context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A link failure in the path of a virtual circuit in a packet data network will lead to premature disconnection of the circuit by the end-points. A soft failure will result in degraded throughput over the virtual circuit. If these failures can be detected quickly and reliably, then appropriate rerouteing strategies can automatically reroute the virtual circuits that use the failed facility. In this paper, we develop a methodology for analysing and designing failure detection schemes for digital facilities. Based on errored second data, we develop a Markov model for the error and failure behaviour of a T1 trunk. The performance of a detection scheme is characterized by its false alarm probability and the detection delay. Using the Markov model, we analyse the performance of detection schemes that use physical layer or link layer information. The schemes basically rely upon detecting the occurrence of severely errored seconds (SESs). A failure is declared when a counter, that is driven by the occurrence of SESs, reaches a certain threshold.For hard failures, the design problem reduces to a proper choice;of the threshold at which failure is declared, and on the connection reattempt parameters of the virtual circuit end-point session recovery procedures. For soft failures, the performance of a detection scheme depends, in addition, on how long and how frequent the error bursts are in a given failure mode. We also propose and analyse a novel Level 2 detection scheme that relies only upon anomalies observable at Level 2, i.e. CRC failures and idle-fill flag errors. Our results suggest that Level 2 schemes that perform as well as Level 1 schemes are possible.