227 resultados para photodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El creciente desarrollo de la industria del cuero y textil en nuestro país, y específicamente en la provincia de Córdoba, ha hecho resurgir en los ultimos años una problemática aún no resuelta que es la elevada contaminación de los recursos hídricos. En ambas industrias, la operación de teñido involucra principalmente colorantes de tipo azoico los cuales son "no biodegradables" y se fragmentan liberando aminas aromáticas cancerígenas. Para abordar esta problemática, la fotocatálisis heterogénea aparece como una nueva tecnología que permitiría la completa mineralización de estos colorantes. A través de radiación y un fotocatalizador sólido adecuado se pueden generan radicales libres eficientes para la oxidación de materia orgánica (colorantes) en medio acuoso. En este sentido, se proponen tamices moleculares mesoporosos modificados con metales de transición (MT) como fotocatalizadores potencialmente aptos para la degradación de estos contaminantes. El propósito principal de este proyecto es el diseño, síntesis, caracterización y evaluación de materiales mesoporosos que presenten actividad fotocatalítica ya sea mediante la modificación de su estructura con diversos metales fotosensibles y/o empleándolos como soporte de óxido de titanio. Se pretende evaluar estos materiales en la degradación de colorantes intentando desplazar su fotosensibilidad hacia la radiación visible para desarrollar nuevas tecnologías con menor impacto ambiental y mayor aprovechamiento de la energía solar. Para ello se sintetizarán materiales del tipo MCM-41 modificados con distintos MT tales como Fe, Cr, Co, Ni y Zn mediante incorporación directa del ión metálico o impregnación. Al mismo tiempo, tanto estos últimos materiales como el MCM-41 silíceo serán empleados como soporte de TiO2. Sus propiedades fisicoquímicas se caracterizarán mediante distintas técnicas instrumentales y su actividad fotocatalítica se evaluará en la degradación de colorantes azoicos bajo radiación visible. Se seleccionará el catalizador más eficiente y se estudiarán los diversos factores que afectan el proceso de fotodegradación. Así mismo, el análisis de la concentración del colorante y los productos presentes en el medio en función del tiempo de reacción permitirá inferir sobre la cinética de la decoloración y postular posibles mecanismos de fotodegradación. Con esta propuesta se espera contribuír al desarrollo de un sector industrial importante en nuestra provincia como es el de las industrias del cuero y textil, mediante la generación de nuevas tecnologías que empleen la energía solar para la degradación de sus efluentes (colorantes). En este sentido, se espera desarrollar nuevos materiales optimizados para lograr la mayor eficiencia fotocatalítica. Esto conduciría entonces hacia la remediación de un problema ambiental de alto impacto tanto para nuestra provincia y nuestro país como para la población mundial, como es la contaminación de los recursos hídricos. Finalmente, con este proyecto se contribuirá a la formación de dos doctorandos y un maestrando, cuyos temas de tesis están vinculados con nuestro objeto de estudio. The increasing development of the textile and leather industries in our country, and specifically in Córdoba, has revived an unresolved problem that is the high contamination of water resources. In both industries, the dyeing involves mainly type azoic dyes which are not biodegradable and break releasing carcinogenic aromatic amines. Heterogeneous photocatalysis appears as a new technology that would allow the complete mineralization of these pollutants. Through radiation and a suitable solid it is possible to generate free radicals for efficient oxidation of organic matter (dyes) in aqueous medium. In this respect, mesoporous molecular sieves modified with transition metals are proposed as potential photocatalysts. The main purpose of this project is the synthesis of mesoporous materials having photocatalytic activity for the degradation of dyes. We will try to move their photosensitivity to visible radiation to develop new technologies with lower environmental impact and greater use of solar energy. Materials MCM-41 modified with metals (Fe, Cr, Co, Ni and Zn) will be synthesized by direct incorporation or impregnation. These materials and the siliceous MCM-41 will be then employed as support of TiO2. The materials will be evaluated in the photocatalytic degradation of azoic dyes under visible radiation. The influence of different factors on the photodegradation proccess will be studied. Kinetic studies will be carried out and a possible reaction way will be proposed. Thus, this work will contribute to the advancement of an important industrial sector and the remediation of an environmental problem with high impact for our province and our country. Moreover, this proyect will contribute to the development of two doctoral tesis and one magister tesis which are vinculated with our study subject.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the construction of a home-made low-cost reactor, using easily available materials, capable of destroying efficiently dissolved organic matter. Just 30 minutes of irradiation were sufficient to destroy more than 99% of the humic acids present in a solution of 4 mg C L-1. Copper speciation was evaluated in natural waters of different salinities to test the reactor's efficiency in destroying organically complexed metal species. The effect of the organic matter concentration, salinity, dissolved oxygen and temperature in the photo-oxidation process is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorinated polymers (PVC, PVDC and E-CTFE) were irradiated with white light produced at the Brazilian Synchrotron Light Source (LNLS). The emitted gases were analyzed by mass spectrometry. The spectra were dominated by peaks related to hydrochloric acid, HCl, and chlorine (35Cl). The measured HCl intensity is used to evaluate the sensitivity of the polymers over a broad energy range. PVDC showed the greatest light sensitivity as compared to PVC and E-CTFE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photodegradation of parathion in natural and dezionised waters was studied under irradiation at two different wavelengths: 280 nm and 313 nm. The influence of humic acids was evaluated. The results demonstrated that the degradation occurred only due to photochemical processes. The chemical hydrolysis and biological processes can be neglected in this case. The addition of humic acids did not increase the photodegradation rate in either water samples (natural or dezionised). In alkaline solutions the photodegradation rate was higher in dezionised water when compared to natural waters. The kinetic degradation in all experiments obeyed a first order reaction pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodegradation of the PAHs anthracene, chrysene and benzo[k]fluoranthane on silica gel impregnated with TiO2 and over glass plates holding TiO2 was studied. Silica gel plates holding these substances were exposed to solar radiation, developed with hexane and photographed under ultra-violet light. The plates containing benzo[k]fluoranthene were also analysed by both diffuse reflectance and laser induced fluorescence. Diffuse reflectance spectra of the fluorescent spot from non irradiated plates showed small differences when compared with those obtained from irradiated plates. These spectral differences are compatible with formation of less conjugated compounds during irradiation. Fluorescence and time resolved fluorescence spectra observed after irradiation were identical to those obtained with benzo[k]fluoranthene in methanol. On plates holding silica, PAH degradation requires longer periods of solar irradiation when compared with those plates containing silica impregnated with TiO2. Glass plates impregnated with TiO2 also showed very rapid PAH degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of polypropylene (PP) and low-density polyethylene (LDPE) were submitted to ultraviolet radiation, in the natural environment and also in the laboratory. Chemical modifications were quantified by the carbonyl index (CI), mechanical properties and melt flow index. The degradation in the laboratory was comparatively faster than in the environment for both types of polymers. The accelerating factor was determined for the various properties investigated. This parameter, however, showed a large variation with the degradation criteria and the type of polymer. The existence of a "universal accelerating factor", therefore, was not observed in the current study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four tropical woods, were investigated to compare their performance and natural resistances to artificial weathering using the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). The species were garapeira (Apuleia leiocarpa), itaúba (Mezilaurus itauba) and tauari (Couratari sp.), woods traditionally indicated for exterior uses, and marupá (Simarouba amara), that served as reference. The samples were submitted to cycles of UV radiation (350 nm) and water until 2,000 h. The photodegradation processes of woods surfaces were accomplished monitoring the changes in the intensities associated to lignin (1508 cm-1) and carbonyl group (1736 cm-1) absorptions. The results have shown that lignin was the first component to be photodegradated, resulting in surfaces mainly composed by cellulose, after 2,000 h of UV irradiation. The processes of formation and lixiviation of carbonyl compounds were different for each species. The experimental conditions used in this work were too severe to evaluate the wood density and extractives content influences during the treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.