995 resultados para phosphate modified zirconia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a new photochromic tungstate based glass which have both absorption coefficient and refractive index modified under laser exposure. The photosensitive effect is superficial under ultraviolet (UV) irradiation but occurs in the entire volume of the glass under visible irradiation. The effect can be obtained in any specific point inside the volume using an infrared femtosecond laser. In addition, the photosensitive phenomenon can be erased by specific heat treatment. This glass can be useful to substitute actual data storage supports and is a promising material for 3-dimensional (3D) and holographic optical storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to determine conditions that may provide greater solubilization of insouluble phosphate, the fungus Aspergillus niger was grown in a stationary culture containing modified citrate medium supplemented with 800 mg fluorapatite per litre. Solubilization of insouluble phosphate increased with fungal growth, reaching a maximum after 11 days of culture. Soluble phosphate levels were correlated with pH of the culture medium but not with titratable acidity values, probably due to the metabolic activity of the fungus resulting from consumption of sugar in the culture medium. Fructose, glucose, xylose, and sucrose were the carbohydrates that favoured fluorapatite solubilization the most when compared with galactose and maltose. Although increasing fructose concentrations in the culture medium favoured mycelial growth, increased total acidity and a fall in pH, soluble phosphate levels were reduced, probably owing to consumption by the rapidly growing fungus. Among the nitrogen sources tested, ammonium salts favoured the production of larger amounts of soluble phosphate than organic nitrogen (peptone or urea) or nitrate, corresponding to the lowest pH and highest titratable acidity values obtained. © 1988 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg−1, and LOQs of 21.43 and 3.97 mg kg−1 were obtained for the bare GCE and the PB-modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in the electronic properties of carbon nanotubes has increased in recent years. These materials can be used in the development of electrochemical sensors for the measurement and monitoring of analytes of environmental interest, such as pharmaceuticals, dyes, and pesticides. This work describes the use of homemade screen-printed electrodes modified with multi-walled carbon nanotubes (MWCNT) for the electrochemical detection of the fungicide thiram. The electrochemical characteristics of the proposed system were evaluated using cyclic voltammetry, with investigation of the electrochemical behavior of the sensor in the presence of the analyte, and estimation of electrochemical parameters including the diffusion coefficient, electron transfer coefficient (α), and number of electrons transferred in the catalytic electro-oxidation. The sensor response was optimized using amperometry. The best sensor performance was obtained in 0.1 mol L-1 phosphate buffer solution at pH 8.0, where a detection limit of 7.9 x 10-6 mol L-1 was achieved. Finally, in order to improve the sensitivity of the sensor, square wave voltammetry (SWV) was used for thiram quantification, instead of amperometry. Using SWV, a response range for thiram from 9.9 x 10-6 to 9.1 x 10-5 mol L-1 was obtained, with a sensitivity of 30948 µA mol L-1, and limits of detection and quantification of 1.6 x 10-6 and 5.4 x 10-6 mol L-1, respectively. The applicability of this efficient new alternative methodology for thiram detection was demonstrated using analyses of enriched soil samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrooxidation of hydroxylamine, NH2OH, in 0.1 M phosphate buffer (PB, pH = 7) on Pt-, and Pd-modified Au electrodes prepared by galvanic displacement of underpotential deposited Cu, was investigated by electrochemical techniques and three and in situ vibrational probes, substrate-induced surface enhanced Raman scattering, SI-SERS, surface enhanced infrared absorption, SEIRAS, and Fourier transform infrared reflection-absorption, IRAS, spectroscopies. Analyses of the results obtained made it possible to identify at low overpotentials, solution phase (sol) and adsorbed (ads) nitric oxide, NO, as well as solution phase nitrous oxide, N2O. As the potential was increased, the peak(s) ascribed to NO(ads) gained in intensity and new features associated with NO2−(ads) and NO2−(sol) were clearly discerned. Further excursion toward higher potentials yielded an additional peak assigned to NO2(ads). This behavior is analogous to that found for bare Au electrodes in a potential region in which the metal is at least partially oxidized under otherwise the same experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem Because airborne-particle abrasion is an efficient method of improving the bond at the zirconia-cement interface, understanding its effect on the strength of yttria-stabilized tetragonal zirconia polycrystal is important. Purpose The purpose of this study was to evaluate the effect of the particle size used for airborne-particle abrasion on the flexural strength and phase transformation of a commercially available yttria-stabilized tetragonal zirconia polycrystal ceramic. Material and Methods For both flexural strength (20.0 × 4.0 × 1.2 mm) (n=14) and phase transformation (14.0-mm diameter × 1.3-mm thickness) (n=4), the zirconia specimens were made from Lava, and their surfaces were treated in the following ways: as-sintered (control); with 50-μm aluminum oxide (Al2O3) particles; with 120-μm Al2O3 particles; with 250-μm Al2O3 particles; with 30-μm silica-modified Al2O3 particles (Cojet Sand); with 120-μm Al2O3 particles, followed by 110-μm silica-modified Al2O3 particles (Rocatec Plus); and with Rocatec Plus. The phase transformation (%) was assessed by x-ray diffraction analysis. The 3-point flexural strength test was conducted in artificial saliva at 37°C in a mechanical testing machine. The data were analyzed by 1-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). Results Except for the Cojet Sand group, which exhibited statistically similar flexural strength to that of the as-sintered group and for the group abraded with 250-μm Al2O3 particles, which presented the lowest strength, airborne-particle abrasion with the other particle sizes provided the highest values, with no significant difference among them. The as-sintered specimens presented no monoclinic phase. The groups abraded with smaller particles (30 μm and 50 μm) and those treated with the larger ones (110 μm and/or 120 μm particles and 250 μm) exhibited percentages of monoclinic phase that varied from 4% to 5% and from 8.7% to 10%. Conclusions Except for abrasion with Cojet Sand, depending on the particle size, zirconia exhibited an increase or a decrease in its flexural strength. Airborne-particle abrasion promoted phase transformation (tetragonal to monoclinic), and the percentage of monoclinic phase varied according to the particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the case of a patient with a severely resorbed mandible who was treated without a bone graft, using short implants, internal rigid fixation, rhBMP-2 and beta-tricalcium phosphate. A 76-year-old woman, with a severely resorbed mandible (less than 3 mm), reported a history of nearly 25 years of complete edentulism and consecutive treatment failures, with total bilateral exposed inferior alveolar nerves and complete bone resorption of the inferior border in some areas. The treatment of choice was the placement of a 2.0 mm thick unilock bone plate (MatrixMandible, Synthes Maxillofacial, Paoli, PA, USA), to reinforce the mandible. Eight short implants with a regular platform (Nobel Biocare, Goteborg, Sweden) were placed: three on the external oblique line on both sides and two on the symphysis. In order to augment mandible height and coat the exposed thread of the anterior implants, rhBMP-2 (Infuse Bone, Meditronic Sofamor Danek, Memphis, TN, USA) and beta-tricalcium phosphate (Cerasorb; Curasan, Kleinostheim, Germany) were used. Four 1.3 mm L miniplates were placed to support the graft. 14 months after surgery, the patient was satisfied and had excellent function without complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the erosive potential of orange juice modified with food-approved additives: 0.4 g/l of calcium (Ca) from calcium lactate pentahydrate, 0.2 g/l of linear sodium polyphosphate (LPP) or their combination (Ca+LPP) were added to a commercially available orange juice (negative control, C-). A commercially available calcium-modified orange juice (1.6 g/l of calcium) was the positive control (C+). These juices were tested using a short-term erosion in situ model, consisting of a five-phase, single-blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing 8 bovine enamel specimens in the mouth and performed erosive challenges for a total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances after each challenge period. Enamel surface microhardness was measured before and after the clinical phase and the percentage of surface microhardness change (%SMC) was determined. Before the procedures, in each phase, the subjects performed a taste test, where the juice assigned to that phase was blindly compared to C-. Overall, C+ showed the lowest %SMC, being the least erosive solution (p < 0.05), followed by Ca+LPP and Ca, which did not differ from each other (p > 0.05). LPP and C- were the most erosive solutions (p <0.05). Taste differences were higher for C+ (5/10 subjects) and Ca (4/10 subjects), but detectable in all groups, including C- (2/10 subjects). Calcium reduced the erosive potential of the orange juice, while no protection was observed for LPP. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic ZrO2 center dot nH(2)O was used for phosphate removal from aqueous solution. The optimum adsorbent dose obtained for phosphate adsorption on to hydrous zirconium oxide was 0.1 g. The kinetic process was described very well by a pseudo-second-order rate model. The phosphate adsorption tended to increase with the decrease in pH. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. A phosphate desorption of approximately 74% was obtained using water at pH 12.