976 resultados para phase mask technique


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have UV-inscribed and theoretically and experimentally analyzed fiber gratings with the structure tilted at 45° and implemented this type of devices as an in-fiber polarizer. A systematic investigation has been carried out on the characterization of 45° tilted fiber gratings (45° TFGs) in terms of the polarization-dependant loss (PDL) and thermal response. The detailed theoretical modeling has revealed a linear correlation between the grating length and the PDL, which has been proved by the experimental results. For the first time, we have examined the UV beam diffraction from a tilted phase mask and designed the UV-inscription system to suit the 45° TFG fabrication. Experimentally, a 24 mm long 45° TFG UV-inscribed in standard telecom single-mode fiber exhibited around 25 dB PDL at 1530 nm and an over ~300 nm bandwidth of PDL spectrum. By the concatenation method, a 44 mm long grating showed a PDL as high as 40 dB that is close to the high polarization extinction ratio of commercial products. Moreover, we have revealed that the PDL of 45° TFGs has low thermal influence, which is desirable for real application devices. Finally, we experimentally demonstrated an all-fiber twist sensor system based on a 45° and an 81° TFG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabrication of gratings has gone a long way since the onset by Kenneth Hill in 1976. Basic fabrication techniques such as holographic and phase-mask which have distinguishing advantages (variable wavelength, and high repeatability consecutively) have since been modified in an effort to combine the advantages of both methods. These basic methods are inherently simple and have few controls, they have been combined and modified over time to enable the possibility of fabricating gratings with complex modulation index and phase profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabrication of gratings has gone a long way since the onset by Kenneth Hill in 1976. Basic fabrication techniques such as holographic and phase-mask which have distinguishing advantages (variable wavelength, and high repeatability consecutively) have since been modified in an effort to combine the advantages of both methods. These basic methods are inherently simple and have few controls, they have been combined and modified over time to enable the possibility of fabricating gratings with complex modulation index and phase profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the effective side detection of radiation-mode out-coupling from blazed fiber Bragg gratings (BFBGs) fabricated in single-mode fiber (SMF) and multimode fiber (MMF). The far-field radiation power distribution from BFBGs have been measured achieving a high spatial-spectral resolution (0.17 mm/nm). We have also investigated comparatively the transmission-loss characteristics of BFBGs in both fiber types, fabricated using phase-mask and holographic inscription techniques. Our results reveal clearly that the radiation out-coupling from BFBGs is significantly stronger and spectrally more confined in MMF than in SMF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Differential group delay measurement of narrowband fiber devices using a fiber polarization scrambler with a modulation phase shift technique is demonstrated. Accurate measurement is realized with high wavelength and delay resolution and immunity to environmental perturbation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A nonlinear polarization rotation based all-fiber passively modelocked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm∼2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar+ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report an efficient power tapping device working in near infra-red (800 nm) wavelength region based on UV-in- scribed 45° tilted fiber grating (45°-TFG) structure. Five 45°-TFGs were UV-inscribed in hydrogenated PS750 fiber using a custom-designed phase mask with different grating lengths of 3 mm, 5 mm, 9 mm, 12 mm and 15 mm, showing polarization dependent losses (PDLs) of 1 dB, 3 dB, 7 dB, 10 dB and 13 dB, respectively. The power side-tapping efficiency is clearly depending on the grating strength. It has been identified that the power tapping efficiency increases with the grating strength and deceases along the grating length. The side-tapped power profile has also been examined in azimuthal direction, showing a near-Gaussian distribution. These experimental results clearly demonstrated that 45°- TFGs may be used as in-fiber power tapping devices for applications requiring in-line signal monitoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.