859 resultados para pharmaceuticals in wastewater
Resumo:
In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
To check the effectiveness of campaigns preventing drug abuse or indicating local effects of efforts against drug trafficking, it is beneficial to know consumed amounts of substances in a high spatial and temporal resolution. The analysis of drugs of abuse in wastewater (WW) has the potential to provide this information. In this study, the reliability of WW drug consumption estimates is assessed and a novel method presented to calculate the total uncertainty in observed WW cocaine (COC) and benzoylecgonine (BE) loads. Specifically, uncertainties resulting from discharge measurements, chemical analysis and the applied sampling scheme were addressed and three approaches presented. These consist of (i) a generic model-based procedure to investigate the influence of the sampling scheme on the uncertainty of observed or expected drug loads, (ii) a comparative analysis of two analytical methods (high performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry), including an extended cross-validation by influent profiling over several days, and (iii) monitoring COC and BE concentrations in WW of the largest Swiss sewage treatment plants. In addition, the COC and BE loads observed in the sewage treatment plant of the city of Berne were used to back-calculate the COC consumption. The estimated mean daily consumed amount was 107 ± 21 g of pure COC, corresponding to 321 g of street-grade COC.
Resumo:
This paper applies a policy analysis approach to the question of how to effectively regulate micropollution in a sustainable manner. Micropollution is a complex policy problem characterized by a huge number and diversity of chemical substances, as well as various entry paths into the aquatic environment. It challenges traditional water quality management by calling for new technologies in wastewater treatment and behavioral changes in industry, agriculture and civil society. In light of such challenges, the question arises as to how to regulate such a complex phenomenon to ensure water quality is maintained in the future? What can we learn from past experiences in water quality regulation? To answer these questions, policy analysis strongly focuses on the design and choice of policy instruments and the mix of such measures. In this paper, we review instruments commonly used in past water quality regulation. We evaluate their ability to respond to the characteristics of a more recent water quality problem, i.e., micropollution, in a sustainable way. This way, we develop a new framework that integrates both the problem dimension (i.e., causes and effects of a problem) as well as the sustainability dimension (e.g., long-term, cross-sectoral and multi-level) to assess which policy instruments are best suited to regulate micropollution. We thus conclude that sustainability criteria help to identify an appropriate instrument mix of end-of-pipe and source-directed measures to reduce aquatic micropollution.
Resumo:
The pharmaceutical industry is one of the most competitive sectors in the European Union. With its substantial investments in research and development, this industry represents a key asset for the European economy and a major source of growth and employment. However, despite the importance of the pharmaceutical sector for the European Union, few researchers have attempted to assess the determinants of the EU exports of pharmaceuticals. This paper aims at filling the aforementioned gap by examining what drives EU exports of pharmaceuticals. In order to tackle this question, this paper has derived hypotheses from the Gravity Model of Trade and the relevant academic literature on pharmaceuticals. Based on an econometric analysis, the research sheds light on the complex interaction of factors influencing the EU exports of pharmaceuticals. The paper finds that the protection of intellectual property in the receiving countries, their economic size, the importance of their health sector, and the quality of infrastructures constitute major drivers to the EU exports of pharmaceuticals. On the contrary, the research shows that transports costs as well as tariff barriers and non-tariff barriers tend to hinder the EU exports of pharmaceuticals.
Resumo:
This study examined the occurrence of pharmaceuticals and personal care products (PPCP's) in surface waters of Florida and their potential to be use as indicators of wastewater contamination. Previous studies have shown that elimination of pharmaceuticals in municipal sewage treatment plants is often incomplete. Aquatic ecosystems are under increased stress from human activities, particularly in heavily populated areas. The purpose of this study was to find an ideal indicator for wastewater. The applied methods, GC/MS and LC/MS, were suitable for the determination of pharmaceuticals and personal care products in aqueous environmental samples to the lower parts-per-trillion (ng/L) level. As a result of this study a snapshot view of the occurrence of pharmaceuticals and personal care products in south Florida was produced. PPCP's were commonly detected in coastal environments of South Florida at relatively low concentrations. In general, PPCP's were higher inside the canals and contained bodies of water than in open water systems. Caffeine was successfully used to describe impacted versus pristine locations. However, no particular correlation was observed among caffeine and other traditional water quality parameters.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
The aims of this phase I study were to establish the maximum tolerated dose, safety profile and activity of liposomal daunorubicin, DaunoXome (NeXstar Pharmaceuticals), in the treatment of metastatic breast cancer. DaunoXome was administered intravenously over 2 h in 21 day cycles and doses were increased from 80 to 100, 120 and 150 mg m 2. Sixteen patients were enrolled. A total of 70 cycles of DaunoXome were administered. The maximum tolerated dose was 120 mg m 2, the dose-limiting toxicity being prolonged grade 4 neutropenia or neutropenic pyrexia necessitating dose reductions at 120 and 150 mg m 2. Asymptomatic cardiotoxicity was observed in three patients: grade 1 in one treated with a cumulative dose of 800 mg m 2 and grade 2 in two, one who received a cumulative dose of 960 mg m 2 and the other a cumulative dose of 600 mg m 2 with a previous neoadjuvant doxorubicin chemotherapy of 300 mg m 2. Tumour response was evaluable in 15 patients, of whom two had objective responses, six had stable disease and seven had progressive disease. In conclusion, DaunoXome is associated with mild, manageable toxicities and has anti-tumour activity in metastatic breast cancer. The findings support further phase II evaluation of DaunoXome alone and in combination with other standard non-anthracycline cytotoxic or novel targeted agents. Although the dose-limiting toxicity for DaunoXome was febrile neutropenia at 120 mg m 2, we would recommend this dose for further evaluation, as the febrile neutropenia occurred after four or more cycles in three of the four episodes seen, was short lived and uncomplicated. © 2002 Cancer Research UK.
Resumo:
Sewer main chokes (blockages) are a key performance indicator for Australian water utilities. Blockages caused by tree roots often result in wastewater overflow posing an environmental and health risk and also requiring service interruptions to repair asset. The purpose of the research project outlined in this paper was to understand the role of environmental parameters, in particular soil type and tree density, in determining the propensity of a sewer to become blocked. The paper demonstrates the application of spatial analysis to inform and communicate the results of the analysis. GIS was used to explore the relationship between tree density and previously recorded sewer blockages for a Melbourne utility. Initial results from the research reveal a relationship between increased tree densities and occurrence of sewer blockages. An improved understanding of the influence of environmental parameters on the inherent risk of sewer blockage will enable asset managers to identify those assets requiring proactive management in order to minimise service interruptions, repairs and environmental impacts.
Resumo:
The properties and toxicity of untreatedwastewater at Davis Station, East Antarctica,were investigated to inform decisions regarding the appropriate level of treatment for local discharge purposes and more generally, to better understand the risk associated with dispersal and impact of wastewaters in Antarctica. Suspended solids, nutrients (nitrogen, phosphorus), biological oxygen demand (BOD), metals, organic contaminants, surfactants and microbiological load were measured at various locations throughout the wastewater discharge system. Wastewater quality and properties varied greatly between buildings on station, each ofwhich has separate holding tanks. Nutrients, BOD and settleable solid levelswere higher than standard municipal wastewaters. Microbiological loads were typical of untreated wastewater. Contaminants detected in the wastewater included metals and persistent organic compounds, mainly polybrominated diphenyl ethers (PBDEs). The toxicity of wastewater was also investigated in laboratory bioassays using two local Antarctic marine invertebrates, the amphipod Paramoera walkeri and the microgastropod Skenella paludionoides. Animals were exposed to a range of wastewater concentrations from3% to 68% (test 1) or 63% (test 2) over 21 days with survival monitored daily. Significant mortality occurred in all concentrations of wastewater after 14 to 21 days, and at higher concentrations (50–68% wastewater) mortality occurred after only one day. Results indicate that the local receiving marine environment at Davis Station is at risk from existing wastewater discharges, and that advanced treatment is required both to remove contaminants shown to cause toxicity to biota, as well as to reduce the environmental risks associated with non-native micro-organisms in wastewater.
Resumo:
Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains.
Resumo:
Introduction Climate change has been described as the most significant global health threat of the 21st century. Already, negative impacts on human health and wellbeing are being observed. These impacts present enormous challenges for the healthcare sector and the time has come for healthcare professionals to demonstrate leadership in addressing these challenges. Since any unsustainable organizational practices of healthcare organisations may ultimately have a negative impact on human health, there is an implicit moral obligation for these organisations and the people who work in them, to deliver healthcare more sustainably. If one considers that in 2010 pharmaceuticals comprised 22% of the carbon footprint of the NHS England (equating to 4.4 million tonnes of CO2 emissions) and 3% of England’s total carbon footprint (NHS Sustainable Development Unit, 2012), by reducing the carbon footprint of pharmaceuticals used in their healthcare organisations, pharmacists can have a significant impact on reducing the organisation’s total carbon footprint and ultimately on the public’s health. Aims The engagement of pharmacists with sustainability initiatives in the workplace has been largely unreported in international and national pharmacy journals. This paper aims to highlight the important role that pharmacists can play in helping to reduce the carbon footprint of healthcare delivery. Methods Literature was reviewed to identify areas where pharmacists could influence the more sustainable use of pharmaceuticals in their organisations. Discussion Much of the carbon footprint of pharmaceuticals is embedded carbon from their manufacture and delivery. Through efficient inventory management practices, pharmacists can reduce the number of orders and potentially reduce the number of deliveries required. Pharmacists can also help to reduce the amount of pharmaceutical waste generated. Of the waste that is generated, they can help improve the segregation of waste streams to increase the amount of non-contaminated packaging waste that is recycled and reduce the amount of pharmaceutical waste being incinerated or ending up in landfill. Reference NHS Sustainable Development Unit. (2012). Sustainability in the NHS Health Check 2012. NHS Sustainable Development Unit. Cambridge, UK: NHS Sustainable Devlopment Unit.
Resumo:
Wastewater analysis was used to examine prevalence and temporal trends in the use of two cathinones, methylone and mephedrone, in an urban population (>200,000 people) in South East Queensland, Australia. Wastewater samples were collected from the inlet of the sewage treatment plant that serviced the catchment from 2011 to 2013. Liquid chromatography coupled with tandem mass spectrometry was used to measure mephedrone and methylone in wastewater sample using direct injection mode. Mephedrone was not detected in any samples while methylone was detected in 45% of the samples. Daily mass loads of methylone were normalized to the population and used to evaluate methylone use in the catchment. Methylone mass loads peaked in 2012 but there was no clear temporal trend over the monitoring period. The prevalence of methylone use in the catchment was associated with the use of MDMA, the more popular analogue of methylone, as indicated by other complementary sources. Methylone use was stable in the study catchment during the monitoring period whereas mephedrone use has been declining after its peak in 2010. More research is needed on the pharmacokinetics of emerging illicit drugs to improve the applicability of wastewater analysis in monitoring their use in the population.
Resumo:
Emerging contaminants (ECs) are chemical compounds commonly present in water. It is only recently that this family of compounds is being recognized as significant water pollutants (. ECs include a wide variety of chemicals such as pharmaceutical and personal care products (PPCPs), pesticides, hydrocarbons and hormones, among others, that once released into the environment exert adverse impacts on the human and wildlife endocrine system. Natural attenuation and conventional treatment processes are not capable of removing these micro-pollutants detected in wastewater influent and effluent and surface and drinking water. The main challenges related with presence of ECs in stormwater in the context of reuse are: a) Development of suitable laboratory test methodologies and protocols for ECs identification and quantification b) Identification of the sources of ECs in the urban environment; c) Understanding their impacts on human and/or ecosystem health; and d). Development of cost-effective removal technologies which are appropriate for large as well as small-scale application.
Resumo:
Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.