168 resultados para phagocytes
Resumo:
The location and morphological features of the blood cells found in the pupal ovary of workers and queens of Apis mellifera are described in relationship with their probable function in the ovary differentiation. The hemocytes from inside the ovarioles are different in both castes. In queens their morphology suggest an action in the tunica propria production, while in workers it suggest a phagocytic activity. The hemocytes present in the intersticial tissue are phagocytes in both castes, and may be responsible by the ovary shapping during metamorphosis.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis (Pb 18) to survive into monocytes are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens, including P. brasiliensis, whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Chloroquine, by virtue of its basic properties, has been shown to prevent release of iron from holotransferrin by raising endocytic and lysosomal pH, and thereby interfering with normal iron metabolism. Then, in view of this, we have studied the effects of CHLOR on P. brasiliensis multiplication in human monocytes and its effect on the murine paracoccidioidomycosis. CHLOR induced human monocytes to kill P. brasiliensis. The effect of CHLOR was reversed by FeNTA, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. CHLOR treatment of Pb 18-infected BALB/c mice significantly reduced the viable fungi recovery from lungs, during three different periods of evaluation, in a dose-dependent manner. This study demonstrates that iron is of critical importance to the survival of P. brasiliensis yeasts within human monocytes and the CHLOR treatment in vitro induces Pb 18 yeast-killing by monocytes by restricting the availability of intracellular iron. Besides, the CHLOR treatment in vivo significantly reduces the number of organisms in the lungs of Pb-infected mice protecting them from several infections. Thus, CHLOR was effective in the treatment of murine paracoccidioidomycosis, suggesting the potential use of this drug in patients' treatment.
Resumo:
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidiodes brasiliensis that presents a wide spectrum of clinical manifestations. Because of the great number of neutrophils polymorphonuclear neutrophils (PMN) found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. This fungus is found intracellularly in PMN and monocytes/macrophages, suggesting that it is capable of evading damage and surviving inside these cells. Thus, in the present study, we investigated whether P. brasiliensis can prolong the lifetime of PMN, and if this process would be related with IL-8 levels. PMN apoptosis and intracellular levels of IL-8 were analysed by flow cytometry and culture supernatants IL-8 levels were evaluated by enzyme-linked immunosorbent assay. We found that coincubation with P. brasiliensis yeast cells results in an inhibition of PMN apoptosis, which was associated with increase in IL-8 production by these cells. Cocultures treatment with monoclonal antibody anti-IL-8 reversed the inhibitory effect of P. brasiliensis on PMN apoptosis, besides to increase spontaneous apoptosis of these cells. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, P. brasiliensis can extend the lifetime of normal human PMN by inducing autocrine IL-8 production. © 2008 The Authors.
Resumo:
Background: Candidemia is a severe fungal infection that primarily affects hospitalized and/or immunocompromised patients. Mononuclear phagocytes have been recognized as pivotal immune cells which act in the recognition of pathogens, phagocytosis, inflammation, polarization of adaptive immune response and tissue repair. Experimental studies have showed that the systemic candidiasis could be controlled by activated peritoneal macrophages. However, the mechanism to explain how these cells act in distant tissue during a systemic fungal infection is still to be elucidated. In the present study we investigate the in vivo trafficking of phagocytic peritoneal cells into infected organs in hypoinsulinemic-hyperglycemic (HH) mice with systemic candidiasis. Methods: The red fluorescent vital dye PKH-26 PCL was injected into the peritoneal cavity of Swiss mice 24 hours before the intravenous inoculation with Candida albicans. After 24 and 48 hours and 7 days of infection, samples of the spleen, liver, kidneys, brain and lungs were submitted to the microbiological evaluation as well as to phagocytic peritoneal cell trafficking analyses by fluorescence microscopy. Results: In the present study, PKH+ cells were observed in the peritoneum, kidney, spleen and liver samples from all groups. In infected mice, we also found PKH+ cells in the lung and brain. The HH condition did not affect this process. Conclusions: In the present study we have observed that peritoneal phagocytes migrate to tissues infected by C. albicans and the HH condition did not interfere in this process. © 2013 Fraga-Silva et al.; licensee BioMed Central Ltd.
Resumo:
Paracoccidioidomycosis is a human systemic mycosis caused by the fungus Paracoccidioides brasiliensis. The mechanisms involved in innate immune response to this fungus are not fully elucidated. Leukotrienes are known to be critical for the clearance of various microorganisms, mainly by mediating the microbicidal function of phagocytes. We investigated the involvement of leukotriene B4 in the early stages of experimental paracoccidioidomycosis, which was induced by intratracheal inoculation of the fungus in selected mouse lines. The mouse lines utilized were produced through bi-directional phenotypic selection, endowed with maximal or minimal acute inflammatory reactivity, and designated AIRmax and AIRmin, respectively. AIRmax mice were more resistant to the infection, which was demonstrated by reduced lung fungal loads. However, the two lines produced similar amounts of leukotriene B4, and pharmacological inhibition of this mediator provoked similar fungal load increases in the two lines. The lower fungal load in the AIRmax mice was associated with a more effective inflammatory response, which was characterized by enhanced recruitment and activation of phagocytic cells and an increased production of activator cytokines. This process resulted in an increased release of fungicidal molecules and a diminution of fungal load. In both lines, leukotriene production was associated with a protective response in the lung that was consequent to the effect of this eicosanoid on the influx and activation of phagocytes. © 2013 ISHAM.
Resumo:
Naringenin and quercetin are considered antioxidant compounds with promising activity against oxidative damage in human cells. However, no reports have described their effects on reactive oxygen species (ROS) production by phagocytes during microbicidal activity. Thus, the present study evaluated the effects of naringenin and quercetin on ROS production, specifically hypochlorous acid (HOCl), and their involvement in the microbicidal activity of neutrophils. Naringenin and quercetin inhibited HOCl production through different systems, but this inhibition was more pronounced for quercetin, even in the cell-free systems. With regard to the microbicidal activity of neutrophils, both naringenin and quercetin completely inhibited the killing of Staphylococcus aureus. Altogether, these data indicate that the decrease in the oxidant activity of neutrophils induced by these compounds directly impaired the microbicidal activity of neutrophils. Naringenin and quercetin exerted their effects by controlling the effector mechanisms of ROS production, with both positive and negative effects of these antioxidant agents in oxidative stress conditions and on ROS in the microbicidal activity of phagocytes. The present results challenge the traditional view of antioxidants as improvers of pathological conditions. © 2013 Francielli de Cássia Yukari Nishimura et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Caracterização de fagócitos mononucleares do sangue tartaruga Phrynops hilarii (Chenolia; chelidade)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
A leishmaniose tegumentar americana (LTA) constitui uma doença infecciosa causada por protozoários do gênero Leishmania com elevada incidência na região Amazônica. Uma variedade de espécies de leishmania é responsável por esta patologia. Desta forma, dependendo da espécie e da resposta imunológica do hospedeiro vertebrado, a doença pode apresentar diferentes formas clínicas, como a leishmaniose cutânea localizada (LCL) e a leishmaniose mucocutânea (LMC). A principal espécie responsável pela LTA é a Leishmania (Viannia) braziliensis. Contudo, devido à existência de uma multiplicidade de cepas desta espécie e ao reduzido número de estudos relacionados, torna-se importante o conhecimento dos aspectos metabólicos básicos do protozoário, como o metabolismo lipídico, na tentativa de caracterizar vias ou componentes fundamentais para seu desenvolvimento e infectividade. Desta forma, este trabalho teve como objetivo analisar distribuição de corpos lipídicos (CLs) e o perfil lipídico de duas cepas de L. (V.) braziliensis, isolada de diferentes casos clínicos, em diferentes períodos da fase estacionária do crescimento celular. As formas promastigotas das cepas M17593 (LCL) e M17323 (LMC) de L. (V.) braziliensis foram utilizadas na fase estacionária inicial (EST-I) e estacionária tardia (EST-T) de crescimento. Inicialmente, foi realizada análise ultraestrutural das formas promastigotas por microscopia eletrônica de transmissão (MET) e foram observadas estruturas sugestivas de CLs distribuídos no citoplasma do parasito, confirmados pela técnica citoquímica ósmio-imidazol, organelas necessárias para o metabolismo energético do parasito. Para quantificar a distribuição de CLs entre os dias de cultivo e entre as cepas, foi realizada análise por citometria de fluxo com Bodipy® 493/503. Os resultados indicaram que a cepa responsável pela LMC apresentou maior quantidade de CLs durante a fase estacionária tardia. Na cepa LCL não foi observado diferença significativa entre as fases estudadas. Assim, pode ser sugerido que a exacerbada resposta inflamatória que ocorre em pacientes com LMC, esteja relacionada com o acúmulo de CLs no parasito, fonte de energia e eicosanoides, como prostaglandinas. Outra hipótese é a possível correlação de CLs com a baixa exposição do fosfolipídio fosfatidilserina para a superfície externa da membrana, importante para a infectividade do parasito. Para análise dos lipídios totais, os parasitos foram submetidos à extração lipídica, seguido da técnica de HPTLC, onde foram encontrados predominantemente fosfolipídios, esterol esterificado, esteróis, triglicerídeos e ácidos graxos compondo o parasito, com variações entre as cepas e entre as fases estudadas. A cepa LCL na fase estacionária tardia possui maior quantidade de lipídios totais, que pode ser justificado por já ser conhecida como a cepa mais infectiva e possivelmente apresentar maior quantidade de glicoconjugados associados com subdomínios lipídicos importantes para o reconhecimento de fagócitos. É importante ressaltar que a maior infectividade da cepa LCL quando comparada à cepa LMC, resulta em um menor processo inflamatório. Estes resultados indicam que há uma variação no perfil lipídico e na distribuição de CLs entre as diferentes cepas de L. (V.) braziliensis, que pode estar relacionado com a infectividade do parasito e com a manifestação clinica da doença.