988 resultados para peridomiciliary colonies
Resumo:
Report on a special investigation of the Amana Colonies Land Use District for the period May 21, 2007 through March 31, 2011
Resumo:
We analysed and compared the diet of Audouin´s gulls Larus audouinii between their two largest breeding sites in the world: the Ebro Delta and the Chafarinas Islands (western Mediterranean). These two localities showed marked differences in the features of the commercial fishing fleet: in the Ebro Delta area a large fishing fleet produced large amounts of discards, while in the Chafarinas the fleet discarded smaller amounts of fish and marine invertebrates, due to the smaller number of vessels. It is also likely that the percentage of discards from total catches is also lower around the Chafarinas than at the Ebro Delta. We distinguished two types of fishing to compare diet compositions: diurnal (only trawling activity) and diurnal and nocturnal (trawling and purse-seine activity, respectively). We also differentiated regurgitates from young nestlings (up to 20 days old) and from older nestlings or adult birds. At the two localities, fish was the main food of Audouin´s gulls, with epipelagic prey (mainly clupeoids) being more important when both diurnal and nocturnal fisheries were operating. This confirms that epipelagic prey either caught actively by the gulls or linked to fisheries was particularly important in the feeding habits of Audouin´s gulls. Nevertheless, differences between the two colonies appear mainly when only trawlers operated: while at the Ebro Delta gulls showed higher consumption of benthic-mesopelagic prey (probably linked to a higher trawler discard availability), gulls from the Chafarinas Islands consumed higher biomass of epipelagic prey probably caught actively at night. When both fleets operated around the two colonies, the average biomass of prey in a regurgitate of younger chicks was significantly higher at the Ebro Delta than at Chafarinas, and the opposite trend was recorded for older nestlings and adults. Niche width was broader in Chafarinas than in the Ebro Delta for both age classes and for any fishing fleet schedule, suggesting again that the exploitation of discards was higher at the Ebro Delta than at the Chafarinas, where gulls showed a more varied diet. Despite the fact that availability of discards was probably higher at the Ebro Delta than at Chafarinas, the per capita availability was not so different at both localities due to the increasing seabird community population at the Ebro Delta, which ca. doubled that at Chafarinas in the last decade.
Resumo:
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.