909 resultados para pediatric intensive care unit (PICU)
Resumo:
OBJECTIVES: To provide a global, up-to-date picture of the prevalence, treatment, and outcomes of Candida bloodstream infections in intensive care unit patients and compare Candida with bacterial bloodstream infection. DESIGN: A retrospective analysis of the Extended Prevalence of Infection in the ICU Study (EPIC II). Demographic, physiological, infection-related and therapeutic data were collected. Patients were grouped as having Candida, Gram-positive, Gram-negative, and combined Candida/bacterial bloodstream infection. Outcome data were assessed at intensive care unit and hospital discharge. SETTING: EPIC II included 1265 intensive care units in 76 countries. PATIENTS: Patients in participating intensive care units on study day. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Of the 14,414 patients in EPIC II, 99 patients had Candida bloodstream infections for a prevalence of 6.9 per 1000 patients. Sixty-one patients had candidemia alone and 38 patients had combined bloodstream infections. Candida albicans (n = 70) was the predominant species. Primary therapy included monotherapy with fluconazole (n = 39), caspofungin (n = 16), and a polyene-based product (n = 12). Combination therapy was infrequently used (n = 10). Compared with patients with Gram-positive (n = 420) and Gram-negative (n = 264) bloodstream infections, patients with candidemia were more likely to have solid tumors (p < .05) and appeared to have been in an intensive care unit longer (14 days [range, 5-25 days], 8 days [range, 3-20 days], and 10 days [range, 2-23 days], respectively), but this difference was not statistically significant. Severity of illness and organ dysfunction scores were similar between groups. Patients with Candida bloodstream infections, compared with patients with Gram-positive and Gram-negative bloodstream infections, had the greatest crude intensive care unit mortality rates (42.6%, 25.3%, and 29.1%, respectively) and longer intensive care unit lengths of stay (median [interquartile range]) (33 days [18-44], 20 days [9-43], and 21 days [8-46], respectively); however, these differences were not statistically significant. CONCLUSION: Candidemia remains a significant problem in intensive care units patients. In the EPIC II population, Candida albicans was the most common organism and fluconazole remained the predominant antifungal agent used. Candida bloodstream infections are associated with high intensive care unit and hospital mortality rates and resource use.
Resumo:
Critical illness is characterised by nutritional and metabolic disorders, resulting in increased muscle catabolism, fat-free mass loss, and hyperglycaemia. The objective of the nutritional support is to limit fat-free mass loss, which has negative consequences on clinical outcome and recovery. Early enteral nutrition is recommended by current guidelines as the first choice feeding route in ICU patients. However, enteral nutrition alone is frequently associated with insufficient coverage of the energy requirements, and subsequently energy deficit is correlated to worsened clinical outcome. Controlled trials have demonstrated that, in case of failure or contraindications to full enteral nutrition, parenteral nutrition administration on top of insufficient enteral nutrition within the first four days after admission could improve the clinical outcome, and may attenuate fat-free mass loss. Parenteral nutrition is cautious if all-in-one solutions are used, glycaemia controlled, and overnutrition avoided. Conversely, the systematic use of parenteral nutrition in the ICU patients without clear indication is not recommended during the first 48 hours. Specific methods, such as thigh ultra-sound imaging, 3rd lumbar vertebra-targeted computerised tomography and bioimpedance electrical analysis, may be helpful in the future to monitor fat-free mass during the ICU stay. Clinical studies are warranted to demonstrate whether an optimal nutritional management during the ICU stay promotes muscle mass and function, the recovery after critical illness and reduces the overall costs.
Resumo:
Rapport de synthèse :Le céfépime a été associé à un taux de mortalité supérieur à celui des autres bêta-lactamines chez les patients traités pour un sepsis sévère. Une des hypothèses avancées pour expliquer ces échecs thérapeutiques sont de possibles effets secondaires cachés (par ex. neurologiques) ou des paramètres pharmacocinétiques/pharmacodynamiques (PK/PD) inadaptés. Le présent travail a étudié cette problématique en mesurant prospectivement la pharmacocinétique du céfépime chez 21 patients consécutifs hospitalisés aux soins intensifs adultes (SIAD) pour une pneumonie nosocomiale. La population étudiée avec un âge médian 55,1 ans, a reçu par voie intraveineuse du céfépime à raison de 2 g toutes les 12 heures pour une clairance de la créatinine (Clcr)>50 mI/ min, et 2 g toutes les 24 heures ou 36 heures pour une Clcr<50 ml /min. Les taux plasmatiques de céfépime ont été mesurés à plusieurs reprises avant et après administration du médicament après la lèoe dose et à l'état d'équilibre par chromatographie en phase liquide à haute pression. Les taux plasmatiques ont considérablement varié entre les patients. Cent pour cent (21/21) des patients ont eu une durée appropriée d'antibiothérapie avec des taux plasmatiques supérieures à la CMI du céfépime (T>CMI>50%) pour les agents pathogènes retrouvés dans cette étude (CMI<4 mg/I), mais seulement 45-65% d'entre eux ont eu une couverture appropriée pour les agents pathogènes potentiels présentant une CMI> 8 mg/I pour le céfépime. Deux patients avec une insuffisance rénale (Clcr<30 ml/min) ont présenté des symptômes compatibles avec une épilepsie non-convulsive (état confusionnel et myoclonies) attribuée dans un 2ème temps à une toxicité du céfépime après que les taux plasmatiques aient été communiqués aux soignants qui ont suspendu l'antibiothérapie avec disparition des symptômes. Les résultats de cette étude empirique confirment l'existence d'effets secondaires cachés et de paramètres PK/PD inappropriés (pour les agents pathogènes ayant des CMI de limite supérieure) dans notre population de SIAD. En outre, ils mettent en évidence une fenêtre thérapeutique efficace pour une posologie de céfépime de 2 g toutes les 12 heures chez les patients ayant une Clcr>50 ml/min infectés par des pathogènes avec des CMI pour le céfépime <4 mg/I. Les échecs thérapeutiques constatés dans cette étude sont probablement liés à des taux sériques inadaptés, résultant de la difficulté de prescription dans les situations cliniques complexes. Dans ce contexte, un prompt dosage plasmatique du céfépime doit être considéré en cas de diminution de la Clcr ou en présence de CMI élevées.
Resumo:
RATIONALE: Many sources of conflict exist in intensive care units (ICUs). Few studies recorded the prevalence, characteristics, and risk factors for conflicts in ICUs. OBJECTIVES: To record the prevalence, characteristics, and risk factors for conflicts in ICUs. METHODS: One-day cross-sectional survey of ICU clinicians. Data on perceived conflicts in the week before the survey day were obtained from 7,498 ICU staff members (323 ICUs in 24 countries). MEASUREMENTS AND MAIN RESULTS: Conflicts were perceived by 5,268 (71.6%) respondents. Nurse-physician conflicts were the most common (32.6%), followed by conflicts among nurses (27.3%) and staff-relative conflicts (26.6%). The most common conflict-causing behaviors were personal animosity, mistrust, and communication gaps. During end-of-life care, the main sources of perceived conflict were lack of psychological support, absence of staff meetings, and problems with the decision-making process. Conflicts perceived as severe were reported by 3,974 (53%) respondents. Job strain was significantly associated with perceiving conflicts and with greater severity of perceived conflicts. Multivariate analysis identified 15 factors associated with perceived conflicts, of which 6 were potential targets for future intervention: staff working more than 40 h/wk, more than 15 ICU beds, caring for dying patients or providing pre- and postmortem care within the last week, symptom control not ensured jointly by physicians and nurses, and no routine unit-level meetings. CONCLUSIONS: Over 70% of ICU workers reported perceived conflicts, which were often considered severe and were significantly associated with job strain. Workload, inadequate communication, and end-of-life care emerged as important potential targets for improvement.
Resumo:
INTRODUCTION: Cefepime has been associated with a greater risk of mortality than other beta-lactams in patients treated for severe sepsis. Hypotheses for this failure include possible hidden side-effects (for example, neurological) or inappropriate pharmacokinetic/pharmacodynamic (PK/PD) parameters for bacteria with cefepime minimal inhibitory concentrations (MIC) at the highest limits of susceptibility (8 mg/l) or intermediate-resistance (16 mg/l) for pathogens such as Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. We examined these issues in a prospective non-interventional study of 21 consecutive intensive care unit (ICU) adult patients treated with cefepime for nosocomial pneumonia. METHODS: Patients (median age 55.1 years, range 21.8 to 81.2) received intravenous cefepime at 2 g every 12 hours for creatinine clearance (CLCr) >or= 50 ml/min, and 2 g every 24 hours or 36 hours for CLCr < 50 ml/minute. Cefepime plasma concentrations were determined at several time-points before and after drug administration by high-pressure liquid chromatography. PK/PD parameters were computed by standard non-compartmental analysis. RESULTS: Seventeen first-doses and 11 steady states (that is, four to six days after the first dose) were measured. Plasma levels varied greatly between individuals, from two- to three-fold at peak-concentrations to up to 40-fold at trough-concentrations. Nineteen out of 21 (90%) patients had PK/PD parameters comparable to literature values. Twenty-one of 21 (100%) patients had appropriate duration of cefepime concentrations above the MIC (T>MIC >or= 50%) for the pathogens recovered in this study (MIC <or= 4 mg/l), but only 45 to 65% of them had appropriate coverage for potential pathogens with cefepime MIC >or= 8 mg/l. Moreover, 2/21 (10%) patients with renal impairment (CLCr < 30 ml/minute) demonstrated accumulation of cefepime in the plasma (trough concentrations of 20 to 30 mg/l) in spite of dosage adjustment. Both had symptoms compatible with non-convulsive epilepsy (confusion and muscle jerks) that were not attributed to cefepime-toxicity until plasma levels were disclosed to the caretakers and symptoms resolved promptly after drug arrest. CONCLUSIONS: These empirical results confirm the suspected risks of hidden side-effects and inappropriate PK/PD parameters (for pathogens with upper-limit MICs) in a population of ICU adult patients. Moreover, it identifies a safety and efficacy window for cefepime doses of 2 g every 12 hours in patients with a CLCr >or= 50 ml/minute infected by pathogens with cefepime MICs <or= 4 mg/l. On the other hand, prompt monitoring of cefepime plasma levels should be considered in case of lower CLCr or greater MICs.
Resumo:
Preterm or sick neonates are frequently hampered in establishing a safe and efficient oral feeding. This can delay hospital discharge and impact on parent-child bonding, growth or neurodevelopment. Recent researches identified a pattern of interventions that could allow to reduce these troubles and to shorten hospital stays.
Resumo:
BACKGROUND: Abdominal infections are frequent causes of sepsis and septic shock in the intensive care unit (ICU) and are associated with adverse outcomes. We analyzed the characteristics, treatments and outcome of ICU patients with abdominal infections using data extracted from a one-day point prevalence study, the Extended Prevalence of Infection in the ICU (EPIC) II. METHODS: EPIC II included 13,796 adult patients from 1,265 ICUs in 75 countries. Infection was defined using the International Sepsis Forum criteria. Microbiological analyses were performed locally. Participating ICUs provided patient follow-up until hospital discharge or for 60 days. RESULTS: Of the 7,087 infected patients, 1,392 (19.6%) had an abdominal infection on the study day (60% male, mean age 62 ± 16 years, SAPS II score 39 ± 16, SOFA score 7.6 ± 4.6). Microbiological cultures were positive in 931 (67%) patients, most commonly Gram-negative bacteria (48.0%). Antibiotics were administered to 1366 (98.1%) patients. Patients who had been in the ICU for ≤ 2 days prior to the study day had more Escherichia coli, methicillin-sensitive Staphylococcus aureus and anaerobic isolates, and fewer enterococci than patients who had been in the ICU longer. ICU and hospital mortality rates were 29.4% and 36.3%, respectively. ICU mortality was higher in patients with abdominal infections than in those with other infections (29.4% vs. 24.4%, p < 0.001). In multivariable analysis, hematological malignancy, mechanical ventilation, cirrhosis, need for renal replacement therapy and SAPS II score were independently associated with increased mortality. CONCLUSIONS: The characteristics, microbiology and antibiotic treatment of abdominal infections in critically ill patients are diverse. Mortality in patients with isolated abdominal infections was higher than in those who had other infections.
Resumo:
OBJECTIVE: Critical care is a working environment with frequent exposure to stressful events. High levels of psychological stress have been associated with increased prevalence of burnout. Psychological distress acts as a potent trigger of cortisol secretions. We attempted to objectify endocrine stress reactivity. DESIGN: Observational cohort study during two 12-day periods in successive years. SETTING: A tertiary multidisciplinary neonatal and pediatric intensive care unit (33 beds). SUBJECTS: One hundred and twelve nurses and 27 physicians (94% accrual rate). INTERVENTIONS AND MEASUREMENTS: Cortisol determined from salivary samples collected every 2 hrs and after stressful events. Participants recorded the subjective perception of stress with every sample. Endocrine reactions were defined as transient surges in cortisol of >50% and 2.5 nmol/L over the baseline. MAIN RESULTS: During 7,145 working hours, we observed 474 (12.5%) endocrine reactions from 3,781 samples. The mean cortisol increase amounted to 10.6 nmol/L (219%). The mean occurrence rate of endocrine reactions per subject and sample was 0.159 (range, 0-0.43). Although the mean raw cortisol levels were lower in experienced team members (>3 yrs of intensive care vs. <3 yrs, 4.1 vs. 4.95 nmol/L, p < .001), professional experience failed to attenuate the frequency and magnitude of endocrine reactions, except for the subgroup of nurses and physicians with >8 yrs of intensive care experience. A high proportion (71.3%) of endocrine reactions occurred without conscious perception of stress. Unawareness of stress was higher in intensive care nurses (75.1%) than in intermediate care nurses (51.8%, p < .01). CONCLUSIONS: Stress-related cortisol surges occur frequently in neonatal and pediatric critical care staff. Cortisol increases are independent of subjective stress perception. Professional experience does not abate the endocrine stress reactivity.
Resumo:
Concerning catheter-related infections, many studies have been conducted until the last consensus conference of the Sociétéde réanimation de langue française (SRLF) in 1994. This text is the synthesis of the considerable amount of work performed by the experts of the society to review recent studies. The experts' texts as well as extensive bibliography are available at http://www.srlf.org.
Resumo:
There are growing concerns on long-term health consequences, notably on fertility rates, of plasticizers such as phthalates. While di(2-ethylhexyl)phthalate (DEHP) is currently used in several medical devices, newborns in the neonatal intensive care unit are both more exposed and more vulnerable to DEHP. The objectives of this study were to identify, count, and describe possible sources of DEHP in a neonatal care unit. Our method consisted in the listing and the inspection of the information on packaging, complemented by contact with manufacturers when necessary. According to the results, 6% of all products and 10% of plastic products contained some DEHP; 71% of these involved respiratory support devices. A vast majority of the items showed no information on the content of DEHP. Further research is needed, particularly to determine the effects of such an early exposure and to study and develop safer alternatives.
Resumo:
Introduction Medication errors in hospitalsmay occur at any step of the medication process including prescription, transcription, preparation and administration, and may originate with any of the actors involved. Neonatal intensive care units (NICU) take care of extremely frail patients in whom errors could have dramatic consequences. Our objective was to assess the frequency and nature of medication errors in the NICU of a university hospital in order to propose measures for improvement.Materials & Methods The design was that of an observational prospective study over 4 consecutivemonths. All patients receiving C 3drugs were included. For each patient, observations during the different stages were compiled in a computer formulary and compared with the litterature. Setting: The 11-bed NICU of our university hospital.Main outcome measures:(a) Frequency and nature of medication errors in prescription,transcription, preparation and administration.(b) Drugs affected by errors.Results 83 patients were included. 505 prescriptions and transcriptions, 447 preparations and 464 administrations were analyzed. 220 medications errors were observed: 102 (46.4%) at prescription, 25 (11.4%) at transcription, 19 (8.6%) at preparation and 73 (33.2%) at administration. Uncomplete/ambiguous orders (24; 23.5%) were the most common errors observed at prescription, followed by wrong name (21; 20.6%), wrong dose (17; 16.7%) and omission (15; 14.7%). Wrong time (33; 45.2%) and wrong administration technique (31; 42.5%) were the most important medication errors during administration. According to the ATC classification, systemic antibacterials (53; 24.1%) were the most implicated, followed by perfusion solutions (40; 18.2%), respiratory system products (30; 13.6%), and mineral supplements and antithrombotic agents (20; 9.1%).Discussions, Conclusion Proposed recommendations: ? Better teaching of neonatal prescription to medical interns;? Improved prescription form to avoid omissions and ambiguities;? Development of a neonatal drug formulary, including prescription,preparation and administration modalities to reduce errors at different stages;? Presence of a clinical pharmacist in the NICU.Disclosure of Interest None Declared