930 resultados para pattern-mixture model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Izenman and Sommer (1988) used a non-parametric Kernel density estimation technique to fit a seven-component model to the paper thickness of the 1872 Hidalgo stamp issue of Mexico. They observed an apparent conflict when fitting a normal mixture model with three components with unequal variances. This conflict is examined further by investigating the most appropriate number of components when fitting a normal mixture of components with equal variances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we look at three models (mixture, competing risk and multiplicative) involving two inverse Weibull distributions. We study the shapes of the density and failure-rate functions and discuss graphical methods to determine if a given data set can be modelled by one of these models. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel maximum-likelihood-based algorithm for estimating the distribution of alignment scores from the scores of unrelated sequences in a database search. Using a new method for measuring the accuracy of p-values, we show that our maximum-likelihood-based algorithm is more accurate than existing regression-based and lookup table methods. We explore a more sophisticated way of modeling and estimating the score distributions (using a two-component mixture model and expectation maximization), but conclude that this does not improve significantly over simply ignoring scores with small E-values during estimation. Finally, we measure the classification accuracy of p-values estimated in different ways and observe that inaccurate p-values can, somewhat paradoxically, lead to higher classification accuracy. We explain this paradox and argue that statistical accuracy, not classification accuracy, should be the primary criterion in comparisons of similarity search methods that return p-values that adjust for target sequence length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be fitted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent factor space. By working in this reduced space, it allows a model for each component-covariance matrix with complexity lying between that of the isotropic and full covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a practical example that considers the clustering of cell lines on the basis of gene expressions from microarray experiments. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Actualmente tem-se observado um aumento do volume de sinais de fala em diversas aplicações, que reforçam a necessidade de um processamento automático dos ficheiros. No campo do processamento automático destacam-se as aplicações de “diarização de orador”, que permitem catalogar os ficheiros de fala com a identidade de oradores e limites temporais de fala de cada um, através de um processo de segmentação e agrupamento. No contexto de agrupamento, este trabalho visa dar continuidade ao trabalho intitulado “Detecção do Orador”, com o desenvolvimento de um algoritmo de “agrupamento multi-orador” capaz de identificar e agrupar correctamente os oradores, sem conhecimento prévio do número ou da identidade dos oradores presentes no ficheiro de fala. O sistema utiliza os coeficientes “Mel Line Spectrum Frequencies” (MLSF) como característica acústica de fala, uma segmentação de fala baseada na energia e uma estrutura do tipo “Universal Background Model - Gaussian Mixture Model” (UBM-GMM) adaptado com o classificador “Support Vector Machine” (SVM). No trabalho foram analisadas três métricas de discriminação dos modelos SVM e a avaliação dos resultados foi feita através da taxa de erro “Speaker Error Rate” (SER), que quantifica percentualmente o número de segmentos “fala” mal classificados. O algoritmo implementado foi ajustado às características da língua portuguesa através de um corpus com 14 ficheiros de treino e 30 ficheiros de teste. Os ficheiros de treino dos modelos e classificação final, enquanto os ficheiros de foram utilizados para avaliar o desempenho do algoritmo. A interacção com o algoritmo foi dinamizada com a criação de uma interface gráfica que permite receber o ficheiro de teste, processá-lo, listar os resultados ou gerar um vídeo para o utilizador confrontar o sinal de fala com os resultados de classificação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proceedings of International Conference Conference Volume 7830 Image and Signal Processing for Remote Sensing XVI Lorenzo Bruzzone Toulouse, France | September 20, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperspectral unmixing methods aim at the decomposition of a hyperspectral image into a collection endmember signatures, i.e., the radiance or reflectance of the materials present in the scene, and the correspondent abundance fractions at each pixel in the image. This paper introduces a new unmixing method termed dependent component analysis (DECA). This method is blind and fully automatic and it overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA is based on the linear mixture model, i.e., each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abundances are modeled as mixtures of Dirichlet densities, thus enforcing the non-negativity and constant sum constraints, imposed by the acquisition process. The endmembers signatures are inferred by a generalized expectation-maximization (GEM) type algorithm. The paper illustrates the effectiveness of DECA on synthetic and real hyperspectral images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linear unmixing decomposes an hyperspectral image into a collection of re ectance spectra, called endmember signatures, and a set corresponding abundance fractions from the respective spatial coverage. This paper introduces vertex component analysis, an unsupervised algorithm to unmix linear mixtures of hyperpsectral data. VCA exploits the fact that endmembers occupy vertices of a simplex, and assumes the presence of pure pixels in data. VCA performance is illustrated using simulated and real data. VCA competes with state-of-the-art methods with much lower computational complexity.