984 resultados para oxindole-Schiff bases
Resumo:
Synergistic hypergolic ignition with nitrogen tetroxide ( N2O4) as oxidizer has been observed in hybrid systems comprising of a mixture of magnesium and Schiff bases as fuels. The ignition delays (IDs) measured using a modified device, have been compared with those of magnesium-Schiff base-WFNA systems under identical conditions. The ID has been found to vary with the nature of the substitution in both the benzene rings. A linear relationship emerges when the ignition delays are plotted against the Hammett substitution constants (σ). The preignition products of the reaction of N2O4 with magnesium and benzylidineaniline have been analysed to be Mg(NO3)2, benzenediazonium salt and benzaldehyde. Based on the preignition products isolated, a probable reaction mechanism has been proposed. The previously proposed preignition mechanism for the Schiff base-magnesium-WFNA system has been further supported from the present ignition delay data.
Resumo:
Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.
Resumo:
Uranyl complexes of two Schiff bases, semicarbazone and hydrazone containing OON donor atoms have been synthesized and characterized on the basis of NMR, IR and electronic spectral studies, conductance, magnetic susceptibility and thermogravimetric data. The 1H NMR spectrum of the semicarbazone complex shows low field signals due to OH, NH and ---CH=N groups at 10.23, 9.31 and 8.17 ppm, respectively. The aromatic protons appear in the range 7.74–7.40 ppm. On complexation with U(VI) the signals due to OH and NH disappear evidently due to their participation in coordination. The coordination number of the o-vanillin semicarbazone (oVSC) complex is 6 whereas, that of the o-vanillin isonicotinic acid hydrazone (oVINAH) complex is 8, in addition to the two oxygen atoms already bonded to U(VI) in each species. The thermograms show the presence of 3 and 2 water molecules in these complexes, respectively and the IR spectral data also support the above conclusion. Suitable structures have been assigned.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
A range of novel chiral tellurium compounds having an azomethine functional group in the position ortho to tellurium has been synthesized by the reaction of the tellurium-containing aldehydes bis(o-formylphenyl) telluride (1) and o-(butyltelluro)benzaldehyde (4) with chiral amines (R)-(+)-(1-pheylethylamine) and (1R,2S)-(-)-norephedrine, respectively. The precursor aldehydes were prepared by using a reported procedure with slight but advantageous modifications. During the preparation of o-(butyltelluro)benzaldehyde, interesting side products, namely bis(o-formylphenyl) ditelluride ethylene acetal 5, bis(o-formylphenyl) tritelluride (6), and bis(o-formylphenyl) ditelluride (7) were isolated in moderate yields. The ditelluride 7 has been characterized by single-crystal X-ray diffraction studies. The liquid Schiff bases 10 and 11 were further characterized by derivatizing with liquid bromine. The title compound was obtained in excellent yield by reacting the Schiff base 11 with elemental bromine. Detailed NMR studies indicated the presence of a rigid environment for the hydroxyl group. Single-crystal X-ray determinations of the crystals obtained from the different batches indicated. the presence of the two pseudopolymorphic forms 13a and 13b, respectively. In the case of 13a there is one molecule of CH3CN as solvent of crystallization, whereas in 13b half a molecule of CH3CN per molecule of the title compound lies along the 2-fold axis. In 13a the hydroxyl hydrogen is hydrogen-bonded to the nitrogen of the solvent molecule, whereas in 13b it is hydrogen-bonded to the bromine of the neighboring molecule.
Resumo:
Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.
Resumo:
The intermolecular interactions and structural features in crystals of seven halogenated N-benzylideneanilines (Schiff bases), all of which exhibit remarkable flexibility, were examined to identify the common packing features that are the raison d'etre for the observed elasticity. The following two features, in part related, were identified as essential to obtain elastic organic crystals: 1)A multitude of weak and dispersive interactions, including halogen bonds, which may act as structural buffers for deformation through easy rupture and reformation during bending; and 2)corrugated packing patterns that would get interlocked and, in the process, prevent long-range sliding of molecular planes.
Resumo:
In this paper, 20 kinds of different 2-(alpha-arylamino phosphonate)-chitosan (2-alpha-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-alpha-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-alpha-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 mu g mL(-1). Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Three kinds of Schiff bases of carboxymethyl chitosan (CMCTS) were prepared, and their antifungal activities were assessed according to Jasso de Rodriguez's method. The results indicated that 2-(2-hydroxybenzylideneamino)-6-carboxymethylchitosan (HNCMCTS) and 2-(5-chloro-2-hydroxybenzylideneamino)-6-carboxymethylchitosan (HCCMCTS) had better inhibitory effects than those of chitosan or CMCTS against Fusarium oxysporium f. sp. vasinfectum, Alternaria solani, and Valsa mali. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of <1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo.
Resumo:
Tese de doutoramento, Química (Química Inorgânica), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.