977 resultados para overland-flow field
Resumo:
The replacement of undisturbed tropical forest with cattle pasture has the potential to greatly modify the hydrology of small watersheds and the fluxes of solutes. We examined the fluxes of water, Cl(-), NO(3)(-)-N: SO(4)(2--)-S, NH(4)(+)-N, Na(+), K(+), Mg(2+) and Ca(2+) in different flow paths in similar to 1 ha catchments of undisturbed open tropical rainforest and a 20 year-old pasture established from forest in the southwestern Brazilian Amazon state of Rondonia. Storm flow discharge was 18% of incident rainfall in pasture, but only 1% in forest. Quickflow predominated over baseflow in both catchments and in both wet and dry seasons. In the pasture, groundwater and quickflow were important flow paths for the export of all solutes. In the forest, quickflow was important for NO(3)(-)-N export, but all other solutes were exported primarily by groundwater outflow. Both catchments were sinks for SO(4)(2-)-S and Ca(2+), and sources of Na(+). The pasture catchment also lost K(+) and Mg(2+) because of higher overland flow frequency and volume and to cattle excrement. These results show that forest clearing dramatically influences small watershed hydrology by increasing quickflow and water export to streams. They also indicate that tropical forest watersheds are highly conservative for most solutes but that pastures continue to lose important cations even decades after deforestation and pasture establishment. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
During the past 40 years colluvial and alluvial deposits have been used in Brazil as good indicators of regional landscape sensitivity to Quaternary environmental changes. In spite of the low resolution of most of the continental sedimentary record, geomorphology and sedimentology may favor palaeoenvironmental interpretation when supported by independent proxy data. This paper presents results obtained from pedostratigraphic sequences, in near-valley head sites of southern Brazilian highlands, based on geomorphologic. sedimentologic, micromorphologic, isotopic and palynologic data. Results point to environmental changes, with ages that coincide with Marine Isotopic Stages (MIS) 5b; 3; 2 and 1. During the late Pleistocene, although under temperatures and precipitation lower than today, the local record points to relatively wet local environments, where shallow soil-water saturated zones contributed to erosion and sedimentation during periods of climatic change, as during the transition between MIS 2 and MIS 1. Late Pleistocene events with ages that coincide with the Northern Hemisphere Younger Dryas are also depicted. During the mid Holocene, slope-wash deposits suggest a climate drier than today, probably under the influence of seasonally contrasted precipitation regimes. The predominance of overland flow-related sedimentary deposits suggests an excess of precipitation over evaporation that influenced local palaeohydrology. This environmental condition seems to be recurrent and explains how slope morphology had influenced pedogenesis and sedimentation in the study area. Due to relative sensitiveness, resilience and short source-to-sink sedimentary pathways, near-valley head sites deserve further attention in Quaternary studies in the humid tropics. (c) 2008 Elsevier B.A. All rights reserved.
Resumo:
The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end-member mixing analysis (EMMA) to 10 small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end-members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27-28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45-57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60-89% in pasture watersheds of less than 10 ha to 0% in forest and 27-28% in pastures in watersheds greater than 100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Florida Spodosols axe sandy, inherently low in Fe- and Al-based minerals, and sorb phosphorus (P) poorly. We evaluated runoff and leachate P losses from a typical Florida Spodosol amended with biosolids and triple superphosphate (TSP). Phosphorus losses were evaluated with traditional indoor rainfall simulations but used a double-deck box arrangement that allowed leaching and runoff to be determined simultaneously. Biosolids (Lakeland, OCUD, Milorganite, and Disney) represented contrasting values of total P, percent water-extractable p (PWEP), and percentage of solids. All P sources were surface applied at 224 kg P ha(-1), representing a soil P rate typical of N-based biosolids application. All biosolids-P sources lost less P than TSp, and leachate-P losses generally dominated. For Lakeland-amended I soil, bioavailable P (BAP) was mainly lost by runoff (81% of total BAP losses). This behavior was due to surface scaling and 1 drying after application of the slurry (31 g kg(-1) solids), material. For all other P sources, BAP losses in leachate were much,greater than in runoff, representing 94% of total BAP losses for TSP, 80% for Milorganite, 72% for Disney, and 69% for OCUD treatments. Phosphorus leaching can be extreme and represents a great concern in many coarse-textured Florida Spodosols, and other coastal plain soils with low P-sorption,capacities. The PWEP values of P sources were significantly correlared with total P and BAP losses in runoff and leachate. The PWEP of a source can serve as a good indicator of potential P loss when amended to sandy soils with low P-retention capacities.
Resumo:
The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal development of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
In high-velocity free-surface flows, air is continuously being trapped and released through the free-surface. Such high-velocity highly-aerated flows cannot be studied numerically because of the large number of relevant equations and parameters. Herein an advanced signal processing of traditional single- and dual-tip conductivity probes provides some new information on the air-water turbulent time and length scales. The technique is applied to turbulent open channel flows in a large-size facility. The auto- and cross-correlation analyses yield some characterisation of the large eddies advecting the bubbles. The transverse integral turbulent length and time scales are related to the step height: i.e., Lxy/h ~ 0.02 to 0.2, and T.sqrt(g/h) ~ 0.004 to 0.04. The results are irrespective of the Reynolds numbers. The present findings emphasise that turbulent dissipation by large-scale vortices is a significant process in the intermediate zone between the spray and bubbly flow regions (0.3 < C < 0.7). Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. The results are significant because they provide a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.
Resumo:
Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
An experimental and theoretical study of the electro-rheological effects observed in the nematic phase of 4-n-heptyl-4'-cyanobiphenyl has been conducted. This liquid crystal appears to be a model system, in which the observed rheological behaviour can be interpreted by the Leslie-Ericksen continuum theory for low molecular weight liquid crystals. Flow curves are illustrated at different temperatures and under the influence of an external electric field ranging from 0 to 3 kV mm-1, applied perpendicular to the direction of flow. Also presented is the apparent viscosity as a function of temperature, over similar values of electric field, obtained at different shear rates. A master flow curve has been constructed for each temperature by dividing the shear rate by the square of the electric field and multiplying by the square of a reference value of electric field. In a log-log plot, two Newtonian plateaux are found to appear at low and high shear rates, connected by a shear-thinning region. We have applied the Leslie-Ericksen continuum theory, in which the director alignment angle is a function of the electric field and the flow field boundary conditions are neglected, to determine viscoelastic parameters and the dielectric anisotropy.
Resumo:
DMFC, dynamic behaviour, current steps, system analysis, methanol oxidation, flow field design
Resumo:
We study the dynamics of Staffman-Taylor fingering in terms of topological defects of the flow field. The defects are created and/or annihilated at the interface. The route towards the single-finger steady state is characterized by a detailed mechanism for defect annihilation. For small viscosity contrast this mechanism is impeded, and creation of new defects leads the system away from a single-finger solution. Strong evidence for a drastic reduction of the basin of attraction of the Saffman-Taylor finger is presented.