425 resultados para osseointegration
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant. The primary aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the developments in Australia. The secondary aim is to provide an overview of the possible critical changes that may occurred in the world of prosthetic following these developments in bone-anchored prostheses.
Resumo:
Bone-anchored prostheses, relying on implants to attach the prosthesis directly to the residual skeleton, are the ultimate resort for patients with transfemoral amputations (TFA) experiencing severe socket discomfort. The first patient receiving a bone-anchored prosthesis underwent the surgery in 1990 in the Sahlgrenska University Hospital (Sweden). To date, there are two commercially available implants: OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany). The key to success to this technique is a firm bone-implant bonding, depending on increasing mechanical stress applied daily during load bearing exercises (LBE). The loading data could be analysed through different biomechanical variables. The intra-tester reliability of these exercises will be presented here. Moreover the effect of increase of loading, axes of application of the load and body weight as well as the difference between force and moment variables will be discussed.
Resumo:
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants
Resumo:
Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb compared to socket-suspended prostheses. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. Clearly, the current momentum experienced worldwide is creating a need for a standardized evaluation framework to assess the benefits and safety of each procedure.
Resumo:
The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. Prior to its advent all prostheses consisted of stump and socket mechanisms which did not changed dramatically since Ambroise Pare lower limb prosthesis in 1525. These socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety.The aims of this paper are (A) to describe the surgical procedure of the OPL; and (B) to present data on potential risks and benefits with assessment of clinical and functional outcomes at follow up
Resumo:
The benefits and safety transcutaneous bone anchored prosthesis relying on a screw fixation are well reported. However, most of the studies on press-fit implants and joint replacement technology have focused on surgical techniques. One European centre using this technique has reported on health-related quality of life (HRQOL) for a group of individuals with transfemoral amputation (TFA). Data from other centres are needed to assess the effectiveness of the technique in different settings. The aim of this study is to report HRQOL data at baseline and up to 2-year follow-up for a group of TFAs treated by Osseointegration Group of Australia who followed the Osseointegration Group of Australia Accelerated Protocol (OGAAP), in Sydney between 08/12/2011 and 09/04/2014.
Resumo:
The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. The socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety. Traditionally this surgery was done as a two-stage procedure. The aims of this study were (A)to describe the single - surgical procedure of the OPL; and (B)To present data on potential risks and benefits with sssessment of clinical and functional outcomes at follow up.
Resumo:
Over the last two decades, Transcutaneous Bone-Anchored Prosthesis (TCBAP) has proven to be an effective alternative for prosthetic attachment for amputees, particularly for individuals unable to wear a socket. However, the load transmitted through a typical TCBAP to the residual tibia and knee joint can be unbearable for transtibial amputees with knee arthritis. The aims of this study are (A) to describe the surgical procedure combining TKR with TCBAP for the first time; and (B) to present preliminary data on potential risks and benefits with assessment of clinical and functional outcomes at follow up.
Resumo:
Osseointegration has been introduced in the orthopaedic surgery in the 1990’s in Gothenburg (Sweden). To date, there are two frequently used commercially available human implants: the OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany) systems. The rehabilitation program with both systems include some form of static load bearing exercises. These latter involved following a load progression that is monitored by the bathroom scale, providing only the load applied on the vertical axis. The loading data could be analysed through different biomechanical variables. For instance, the load compliance, corresponding to the difference between the load recommended (LR) and the load actually applied on the implant, will be presented here.
Resumo:
Typically, the walking ability of individuals with a transfemoral amputation (TFA) can be represented by the speed of walking (SofW) obtained in experimental settings. Recent developments in portable kinetic systems allow assessing the level of activity of TFA during actual daily living outside the confined space of a gait lab. Unfortunately, only minimal spatio-temporal characteristics could be extracted from the kinetic data including the cadence and the duration on gait cycles. Therefore, there is a need for a way to use some of these characteristics to assess the instantaneous speed of walking during daily living. The purpose of the study was to compare several methods to determine SofW using minimal spatial gait characteristics.
Resumo:
The rehabilitation programs of bone-anchorage prostheses relying either on the OPRA (Integrum, Sweden) or the ILP (Orthodynamics, Germany) fixation involve some forms of static load bearing exercises (LBE). So far, most of biomechanical studies of these static LBEs focused on the direct measurements of the actual forces and moments applied on the OPRA fixation of individuals with transfemoral amputation (TFA). To date, the proof-of-concept of an apparatus to conduct these kinetic measurements has been presented, along with some preliminary data. The understanding of the kinetic data is essential to improve rehabilitation programs as well as the design of upcoming loading frames. However, kinetic information alone is difficult to interpret without concomitant kinematic data. The purpose of this preliminary study was to introduce a qualitative analysis describing the different body postures during LBE for a group of TFAs.
Resumo:
Individuals with lower limb amputation fitted with an OPRA osseointegrated fixation are facing an extensive rehabilitation program including static load bearing exercises (LBE). The application of a suitable amount of stress stimulates osseointegration and prepares the bone to tolerate the forces and moments that will be incurred during activities of daily living (ADL. At present, the monitoring is typically carried out using a normal bathroom weighing scale. This scale provides information only on the magnitude of the vertical component of the applied force. The moment around the long axis of the fixation when the femur is perpendicular to the ground is not assessed and neither are the components of force and moment generated on the other two axes.
Resumo:
The conventional method of attachment of prosthesis involves a socket. A new method relying on osseointegrated fixation has emerged in the last decades. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of individuals with lower limb amputation fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this study was to present the key temporal and spatial gait characteristics of individuals with transfemoral amputation (TFA).
Resumo:
This presentation will provide an overview of the load applied on the residuum of transfemoral amputees fitted with an osseointegrated fixation during (A) rehabilitation, including static and dynamic load bearing exercises (e.g., rowing, adduction, abduction, squat, cycling, walking with aids), and (B) activities of daily living including standardized activities (e.g., level walking in straight line and around a circle, ascending and descending slopes and stairs) and activities in real world environments.
Resumo:
The conventional method of attachment of prosthesis involves on a socket. A new method relying on osseointegrated fixation is emerging. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of transfemoral amputees fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this preliminary study was to present the key temporal and spatial gait characteristics.