978 resultados para optical concealment depth


Relevância:

40.00% 40.00%

Publicador:

Resumo:

African dust outbreaks are the result of complex interactions between the land, atmosphere, and oceans, and only recently has a large body of work begun to emerge that aims to understand the controls on-and impacts of-African dust. At the same time, long-term records of dust outbreaks are either inferred from visibility data from weather stations or confined to a few in situ observational sites. Satellites provide the best opportunity for studying the large-scale characteristics of dust storms, but reliable records of dust are generally on the scale of a decade or less. Here the authors develop a simple model for using modern and historical data from meteorological satellites, in conjunction with a proxy record for atmospheric dust, to extend satellite-retrieved dust optical depth over the northern tropical Atlantic Ocean from 1955 to 2008. The resultant 54-yr record of dust has a spatial resolution of 1° and a monthly temporal resolution. From analysis of the historical dust data, monthly tropical northern Atlantic dust cover is bimodal, has a strong annual cycle, peaked in the early 1980s, and shows minimums in dustiness during the beginning and end of the record. These dust optical depth estimates are used to calculate radiative forcing and heating rates from the surface through the top of the atmosphere over the last half century. Radiative transfer simulations show a large net negative dust forcing from the surface through the top of the atmosphere, also with a distinct annual cycle, and mean tropical Atlantic monthly values of the surface forcing range from -3 to -9 W/m**2. Since the surface forcing is roughly a factor of 3 larger in magnitude than the top-of-the-atmosphere forcing, there is also a positive heating rate of the midtroposphere by dust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM To report the finding of extension of the 4th hyper-reflective band and retinal tissue into the optic disc in patients with cavitary optic disc anomalies (CODAs). METHODS In this observational study, 10 patients (18 eyes) with sporadic or autosomal dominant CODA were evaluated with enhanced depth imaging optical coherence tomography (EDI-OCT) and colour fundus images for the presence of 4th hyper-reflective band extension into the optic disc. RESULTS Of 10 CODA patients (18 eyes), five patients (8 eyes) showed a definite 4th hyper-reflective band (presumed retinal pigment epithelium (RPE)) extension into the optic disc. In these five patients (seven eyes), the inner retinal layers also extended with the 4th hyper-reflective band into the optic disc. Best corrected visual acuity ranged from 20/20 to 20/200. In three patients (four eyes), retinal splitting/schisis was present and in two patients (two eyes), the macula was involved. In all cases, the 4th hyper-reflective band extended far beyond the termination of the choroid into the optic disc. The RPE extension was found either temporally or nasally in areas of optic nerve head excavation, most often adjacent to peripapillary pigment. Compared with eyes without RPE extension, eyes with RPE extension were more myopic (mean dioptres -0.9±2.6 vs -8.8±5, p=0.043). CONCLUSIONS The RPE usually stops near the optic nerve border separated by a border tissue. With CODA, extension of this hyper-reflective band and retinal tissue into the disc is possible and best evaluable using EDI-OCT or analogous image modalities. Whether this is a finding specific for CODA, linked to specific gene loci or is also seen in patients with other optic disc abnormalities needs further evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract : This is a study concerning comparisons between the Dubovik Aerosol optical depth (AOD) retrievals from AEROCAN (ARONET) stations and AOD estimates from simulations provided by a chemical transport model (GEOS-Chem : Goddard Earth Observing System Chemistry). The AOD products associated with the Dubovik product are divided into total, fine and coarse mode components. The retrieval period is from January 2009 to January 2013 for 5 Arctic stations (Barrow, Alaska; Resolute Bay, Nunavut; 0PAL and PEARL (Eureka), Nunavut; and Thule, Greenland). We also employed AOD retrievals from 10 other mid-latitude Canadian stations for comparisons with the Arctic stations. The results of our investigation were submitted to Atmosphere-Ocean. To briefly summarize those results, the model generally but not always tended to underestimate the (monthly) averaged AOD and its components. We found that the subdivision into fine and coarse mode components could provide unique signatures of particular events (Asian dust) and that the means of characterizing the statistics (log-normal frequency distributions versus normal distributions) was an attribute that was common to both the retrievals and the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book provides an in-depth examination of the theoretical,legal, social and economic foundations to disclosure and concealment of information in relation to the formation of consumer insurance contracts. A comparative treatment of this issue is undertaken with particular attention given to the judicial and legislative approaches adopted in the United Kingdom, the United States of America, Australia and New Zealand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is possible to estimate the depth of focus (DOF) of the eye directly from wavefront measurements using various retinal image quality metrics (IQMs). In such methods, DOF is defined as the range of defocus error that degrades the retinal image quality calculated from IQMs to a certain level of the maximum value. Although different retinal image quality metrics are used, currently there have been two arbitrary threshold levels adopted, 50% and 80%. There has been limited study of the relationship between these threshold levels and the actual measured DOF. We measured the subjective DOF in a group of 17 normal subjects, and used through-focus augmented visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM. For each subject, a VSOTF threshold level was derived that would match the subjectively measured DOF. Significant correlation was found between the subject’s estimated threshold level and the HOA RMS (Pearson’s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual’s DOF from a single measurement of their wavefront aberrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The depth of focus (DOF) can be defined as the variation in image distance of a lens or an optical system which can be tolerated without incurring an objectionable lack of sharpness of focus. The DOF of the human eye serves a mechanism of blur tolerance. As long as the target image remains within the depth of focus in the image space, the eye will still perceive the image as being clear. A large DOF is especially important for presbyopic patients with partial or complete loss of accommodation (presbyopia), since this helps them to obtain an acceptable retinal image when viewing a target moving through a range of near to intermediate distances. The aim of this research was to investigate the DOF of the human eye and its association with the natural wavefront aberrations, and how higher order aberrations (HOAs) can be used to expand the DOF, in particular by inducing spherical aberrations ( 0 4 Z and 0 6 Z ). The depth of focus of the human eye can be measured using a variety of subjective and objective methods. Subjective measurements based on a Badal optical system have been widely adopted, through which the retinal image size can be kept constant. In such measurements, the subject.s tested eye is normally cyclopleged. Objective methods without the need of cycloplegia are also used, where the eye.s accommodative response is continuously monitored. Generally, the DOF measured by subjective methods are slightly larger than those measured objectively. In recent years, methods have also been developed to estimate DOF from retinal image quality metrics (IQMs) derived from the ocular wavefront aberrations. In such methods, the DOF is defined as the range of defocus error that degrades the retinal image quality calculated from the IQMs to a certain level of the possible maximum value. In this study, the effect of different amounts of HOAs on the DOF was theoretically evaluated by modelling and comparing the DOF of subjects from four different clinical groups, including young emmetropes (20 subjects), young myopes (19 subjects), presbyopes (32 subjects) and keratoconics (35 subjects). A novel IQM-based through-focus algorithm was developed to theoretically predict the DOF of subjects with their natural HOAs. Additional primary spherical aberration ( 0 4 Z ) was also induced in the wavefronts of myopes and presbyopes to simulate the effect of myopic refractive correction (e.g. LASIK) and presbyopic correction (e.g. progressive power IOL) on the subject.s DOF. Larger amounts of HOAs were found to lead to greater values of predicted DOF. The introduction of primary spherical aberration was found to provide moderate increase of DOF while slightly deteriorating the image quality at the same time. The predicted DOF was also affected by the IQMs and the threshold level adopted. We then investigated the influence of the chosen threshold level of the IQMs on the predicted DOF, and how it relates to the subjectively measured DOF. The subjective DOF was measured in a group of 17 normal subjects, and we used through-focus visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM to estimate the DOF. The results allowed comparison of the subjective DOF with the estimated DOF and determination of a threshold level for DOF estimation. Significant correlation was found between the subject.s estimated threshold level for the estimated DOF and HOA RMS (Pearson.s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual.s DOF from a single measurement of their wavefront aberrations. A subsequent study was conducted to investigate the DOF of keratoconic subjects. Significant increases of the level of HOAs, including spherical aberration, coma and trefoil, can be observed in keratoconic eyes. This population of subjects provides an opportunity to study the influence of these HOAs on DOF. It was also expected that the asymmetric aberrations (coma and trefoil) in the keratoconic eye could interact with defocus to cause regional blur of the target. A dual-Badal-channel optical system with a star-pattern target was used to measure the subjective DOF in 10 keratoconic eyes and compared to those from a group of 10 normal subjects. The DOF measured in keratoconic eyes was significantly larger than that in normal eyes. However there was not a strong correlation between the large amount of HOA RMS and DOF in keratoconic eyes. Among all HOA terms, spherical aberration was found to be the only HOA that helped to significantly increase the DOF in the studied keratoconic subjects. Through the first three studies, a comprehensive understanding of DOF and its association to the HOAs in the human eye had been achieved. An adaptive optics system was then designed and constructed. The system was capable of measuring and altering the wavefront aberrations in the subject.s eye and measuring the resulting DOF under the influence of different combination of HOAs. Using the AO system, we investigated the concept of extending the DOF through optimized combinations of 0 4 Z and 0 6 Z . Systematic introduction of a targeted amount of both 0 4 Z and 0 6 Z was found to significantly improve the DOF of healthy subjects. The use of wavefront combinations of 0 4 Z and 0 6 Z with opposite signs can further expand the DOF, rather than using 0 4 Z or 0 6 Z alone. The optimal wavefront combinations to expand the DOF were estimated using the ratio of increase in DOF and loss of retinal image quality defined by VSOTF. In the experiment, the optimal combinations of 0 4 Z and 0 6 Z were found to provide a better balance of DOF expansion and relatively smaller decreases in VA. Therefore, the optimal combinations of 0 4 Z and 0 6 Z provides a more efficient method to expand the DOF rather than 0 4 Z or 0 6 Z alone. This PhD research has shown that there is a positive correlation between the DOF and the eye.s wavefront aberrations. More aberrated eyes generally have a larger DOF. The association of DOF and the natural HOAs in normal subjects can be quantified, which allows the estimation of DOF directly from the ocular wavefront aberration. Among the Zernike HOA terms, spherical aberrations ( 0 4 Z and 0 6 Z ) were found to improve the DOF. Certain combinations of 0 4 Z and 0 6 Z provide a more effective method to expand DOF than using 0 4 Z or 0 6 Z alone, and this could be useful in the optimal design of presbyopic optical corrections such as multifocal contact lenses, intraocular lenses and laser corneal surgeries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the depth of focus (DOF) of the human eye can be affected by the higher order aberrations. We estimated the optimal combinations of primary and secondary Zernike spherical aberration to expand the DOF and evaluated their efficiency in real eyes using an adaptive optics system. The ratio between increased DOF and loss of visual acuity was used as the performance indicator. The results indicate that primary or secondary spherical aberration alone shows similar effectiveness in extending the DOF. However, combinations of primary and secondary spherical aberration with different signs provide better efficiency for expanding the DOF. This finding suggests that the optimal combinations of primary and secondary spherical aberration may be useful in the design of optical presbyopic corrections. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general optical systems, the range of distances over which the detector cannot detect any change in focus is called the depth-of-field. This may be specified by movement of the object or image planes, with the former being referred to as depth-of-field and the latter as depth-of-focus (DOF). Either term can be used in vision science, where we refer to changes in vergence which have the same value in both object and image space.