992 resultados para optic fiber sensor
Resumo:
An all fiber-optical method to monitor densities and viscosities of liquids utilizing a steel cantilever (4 x 0.3 x 0.08 cm3) is presented. The actuation is performed by photothermally heating the cantilever at its base with an intensity-modulated 808 nm diode laser. The cantilever vibrations are picked up by an in-fiber Fabry Perot cavity sensor attached along the length of the cantilever. The fluid properties can be related to the resonance characteristics of the cantilever, e.g. a shift in the resonance frequency corresponds to a change in fluid density, and the width of the resonance peak gives information on the dynamic viscosity after calibration of the system. Aqueous glycerol, sucrose and ethanol samples in the range of 0.79–1.32 gcm−3 (density) and 0.89–702 mPas (viscosity) were used to investigate the limits of the sensor. A good agreement with literature values could be found with an average deviation of around 10 % for the dynamic viscosities, and 5–16 % for the mass densities. A variety of clear and opaque commercial spirits and an unknown viscous sample, e.g. home-made maple syrup, were analyzed and compared to literature values. The unique detection mechanism allows for the characterization of opaque samples and is superior to conventional microcantilever sensors. The method is expected to be beneficial in various industrial sectors such as quality control of food samples.
Resumo:
Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The aim of this work was the use of NIR technology by direct application of a fiber optic probe on back fat to analyze the fatty acid composition of CLA fed boars and gilts. 265 animals were fed 3 different diets and the fatty acid profile of back fat from Gluteus medius was analyzed using gas chromatography and FT-NIR. Spectra were acquired using a Bruker Optics Matrix-F duplex spectrometer equipped with a fiber optic probe (IN-268-2). Oleic and stearic fatty acids were predicted accurately; myristic, vaccenic and linoleic fatty acids were predicted with lower accuracy, while palmitic and α-linolenic fatty acids were poorly predicted. The relative percentage of fatty acids and NIR spectra showed differences in fatty acid composition of back fat from pigs fed CLA which increased the relative percentage of SFA and PUFA while MUFA decreased. Results suggest that a NIR fiber optic probe can be used to predict total saturated and unsaturated fatty acid composition, as well as the percentage of stearic and oleic. NIR showed potential as a rapid and easily implemented method to discriminate carcasses from animals fed different diets.
Resumo:
An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.
Resumo:
A fibre optic technique for detecting trace amounts of nitrite compounds in water is described. The off-line fibre optic sensor outlined here is based on evanescent field absorption in a test solution formed by the reaction of nitrite compounds in water with suitable chemical reagents. A short unclad portion of a plastic clad silica fibre acts as the sensing region. The experimental results clearly establish the usefulness of the present technique for detecting very low concentrations of the order of 1 ppb (parts per billion) of nitrite compounds with a large dynamic range of 1–1000 ppb. Such a high sensitivity enables the present device to be used for measuring the nitrite content in drinking water.
Resumo:
The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10−3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.
Resumo:
We propose and demonstrate the possibility of using a permanently microbent bare optical fiber for detecting chemical species. Two detection schemes, viz., a bright-field detection scheme (for the core modes), and a dark-field detection scheme (for the cladding modes) have been employed to produce a fiber-optic sensor. The sensor described here is sensitive enough to detect concentrations as low as nanomoles per liter of a chemical species, with a dynamic range of more than 6 orders of magnitude.
Resumo:
The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)