964 resultados para omnidirectional radiation pattern
Resumo:
The microstrip antennas are largely used in wireless communication systems due to their low cost, weight, less complex construction and manufacturing, in addition to its versatility. UWB systems have emerged as an alternative to wireless communications over short distances because they offer of higher capacity and lower multipath distortion than other systems with the same purpose. Combining the advantages of microstrip antennas to the characteristics of UWB, it is possible to develop more and more smaller devices, with diverse geometries to operate satisfactorily in these systems. This paper aims to propose alternatives to microstrip antennas for UWB systems operate in the range between 3.1 and 10.6 GHz, with a patch on circular ring. Some techniques are analyzed and employed to increase the bandwidth of proposed antenna: the insertion of a parasitic elements and a rectangular slit in the displaced ground plane. For this, key issues are presented as the basic principles of UWB systems, the fundamental theory of antennas and microstrip antennas. The simulations and experimental characterization of constructed antennas are presented, as well as analysis of parameters such as bandwidth and radiation pattern
Resumo:
This work has as main objective to study the application of microstrip antennas with patch and use of superconducting arrays of planar and linear phase. Was presented a study of the main theories that explain clearly the superconductivity. The BCS theory, Equations of London and the Two Fluid Model are theories that supported the implementation of the superconducting microstrip antennas. Arrangements phase was analyzed in linear and planar configuration of its antennas are reported factors such arrays to settings and criteria of phase and the spacing between the elements that make the arrayst was reviewed in order to minimize losses due to secondary lobes. The antenna used has a rectangular patch Sn5InCa2Ba4Cu10Oy the superconducting material was analyzed by the method of Transverse Transmission Line (TTL) applied in the field of Fourier transform (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of cross-cutting components of the structure. The inclusion of superconducting patch is made using the boundary condition, complex resistive. Are obtained when the resonant frequency depending on the parameters of the antenna, radiation pattern of E-Plan and H-Plan for the M-phase arrangements of antennas in the linear and planar configurations for different values of phase and spacing between the elements.
Resumo:
The modern society depends on an efficient communications system able to of transmitting and receiving information with a higher speed and reliability every time. The need for ever more efficient devices raises optimization techniques of microstrip devices, such as techniques to increase bandwidth: thicker substrates and substrate structures with EBG (Electromagnetic Band Gap) and PBG (Photonic Band Gap). This work has how aims the study of the application of PBG materials on substrates of planar structures in microstrip, more precisely in directional quadrature couplers and in rat-race and impedance of transformers. A study of the planar structures in microstrip and substrates EBG is presented. The PBG substrates can be used to optimize the radiation through the air, thus reducing the occurrence of surface waves and the resulting diffraction edge responsible for degradation of radiation pattern. Through specific programs in FORTRAN Power Station obtained the frequencies and couplings for each structure. Are used the program PACMO - Computer Aided Design in Microwave. Results are obtained of the frequency and coupling devices, ranging the frequency band used (cellular communication and Wimax systems) and the permittivity of the substrate, comparing the results of conventional material and PBG materials in the s and p polarizations.
Resumo:
This work presents the analysis of an antenna of fractal microstrip of Koch with dielectric multilayers and inclinations in the ground plane, whose values of the angles are zero degree (without inclinations), three, seven and twelve degrees. This antenna consists of three dielectric layers arranged vertically on each other, using feeding microstrip line in patch 1, of the first layer, which will feed the remaining patches of the upper layers by electromagnetic coupling. The objective of this work is to analyze the effects caused by increase of the angle of inclination of the ground plane in some antenna parameters such as return loss, resonant frequency, bandwidth and radiation pattern. The presented results demonstrate that with the increase of the inclination angle it is possible to get antennas with characteristics multiband, with bigger bandwidth, and improving the impedance matching for each case analyzed, especially the larger angle
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms.
Resumo:
This work consists on the theoretical and numerical analysis of some properties of circular microstrip patch antennas on isotropic and uniaxial anisotropic substrates. For this purpose, a full wave analysis is performed, using Hertz Vector Potentials method in the Hankel Transform domain. In the numerical analysis, the moment method is also used in order to determine some characteristics of the antenna, such as: resonant frequency and radiation pattern. The definition of Hertz potentials in the Hankel domain is used in association with Maxwell´s equations and the boundary conditions of the structures to obtain the Green´s functions, relating the components of the current density on the patch and the tangential electric field components. Then, the Galerkin method is used to generate a matrix equation whose nontrivial solution is the complex resonant frequency of the structure. In the analysis, a microstrip antenna with only one isotropic dielectric layer is initially considered. For this structure, the effect of using superconductor patches is also analyzed. An analysis of a circular microstrip antenna on an uniaxial anisotropic dielectric layer is performed, using the Hertz vector potentials oriented along the optical axis of the material, that is perpendicular to the microstrip ground plane. Afterwards, the circular microstrip antenna using two uniaxial anisotropic dielectric layers is investigated, considering the particular case in which the inferior layer is filled by air. In this study, numerical results for resonant frequency and radiation pattern for circular microstrip antennas on isotropic and uniaxial anisotropic substrates are presented and compared with measured and calculated results found in the literature
Resumo:
Recently the planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications that needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of y and y . This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular and triangular patches, to obtaining the resonance frequency and radiation pattern of each structure. This method is applied for the treatment of the fields in stacked structures. The Homogenization theory will be applied to obtaining the effective permittivity for s and p polarizations of the substrate composed of PBG material. Numerical results for the triangular and rectangular antennas with single layer, multilayers resonators with triangular and rectangular patches are presented (in photonic and isotropic substrates). Conclusions and suggestions for continuity of this work are presented
Resumo:
The great interest observed in wireless communication systems has required the development of new configurations of microstrip antennas, because they are easily built and integrated to other microwave circuit components, which is suitable for the construction and development of planar antenna arrays and microwave integrated circuits. This work presents a new configuration of tapered microstrip antenna, which is obtained by impressing U-slots on the conducting patch combined with a transmission line matching circuit that uses an inset length. It is shown that the use of U-slots in the microstrip antenna conducting patch excites new resonating modes, that gives a multiband characteristic for the slotted microstrip antenna, that is suitable for applications in communication systems that operates several frequencies simultaneously. Up to this date, the works reported in the literature deals with the use of Uslotted microstrip rectangular antennas fed by a coaxial probe. The properties of a linear array of microstrip patch tapered antennas are also investigated. The main parameters of the U slotted tapered microstrip antennas are investigated for different sizes and locations of the slots impressed on the conducting patch. The analysis of the proposed antenna is performed by using the resonant cavity and equivalent transmission line methods, in combination with a parametric study, that is conducted by the use of the Ansoft Designer, a commercial computer aided microwave software well known by its accuracy and efficiency. The mentioned methods are used to evaluate the effect in the antennas parameters, like resonant frequency and return loss, produced by variations of the antenna structural parameters, accomplished separately or simultaneously. An experimental investigation is also developed, that consists of the design, construction and measurement of several U slotted microstrip antenna prototypes. Finally, theoretical and simulated results are presented that are in agreement with the measured ones. These results are related to the resonating modes identification and to the determination of the main characteristics of the investigated antennas, such as resonant frequency, return loss, and radiation pattern
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
The antenna presented in this article will be developed for satellite communications onboard systems based on the recommendations ITU-R S.580-6 and ITU-R S.465-5. The antenna consists of printed elements grouped in an array, this terminal works in a frequency band from 7.25 up to 8.4 GHz (14.7% of bandwidth), where both bands, reception (7.25 - 7.75 GHz) and transmission (7.9 - 8.4 GHz), are included simultaneously. The antenna reaches a gain about 31 dBi, and it has a radiation pattern with a beamwidth smaller than 10° and a dual circular polarization. The antenna has the capability to steer in elevation from 90° to 40° electronically and 360° in azimuth with a motorized junction.
Resumo:
This work provides the development of an antenna for satellite communications onboard systems based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2]. The antenna consists of printed elements grouped in an array, working in a frequency band from 7.25 up to 8.4 GHz (15% of bandwidth). In this working band, transmission and reception are included simultaneously. The antenna reaches a gain about 31 dBi, has a radiation pattern with a beam width smaller than 10oand dual circular polarization. It has the capability to steer in elevation through a Butler matrix to 45
Resumo:
In this document a microstrip constrained lens device for Ku band, for microwave purpose, is presented. This paper offers an overview of artificial lens-type devices and the proposed transmitarray lens is thoroughly studied in terms of design and manufacturing, with architecture discussion and selection, along with the design, manufacturing and validation of all the forming components of the transmitarray (transmission circuits, radiating elements, etc.). Each element is properly characterized and assembled properly in the complete transmitarray prototype. Eventually, radiation pattern measurements as well as gain and directivity values, are provided to show the proper behaviour of the proposed transmitarray lens.
Resumo:
A new and effective method for reduction of truncation errors in partial spherical near-field (SNF) measurements is proposed. The method is useful when measuring electrically large antennas, where the measurement time with the classical SNF technique is prohibitively long and an acquisition over the whole spherical surface is not practical. Therefore, to reduce the data acquisition time, partial sphere measurement is usually made, taking samples over a portion of the spherical surface in the direction of the main beam. But in this case, the radiation pattern is not known outside the measured angular sector as well as a truncation error is present in the calculated far-field pattern within this sector. The method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. To verify the effectiveness of the method, several examples are presented using both simulated and measured truncated near-field data.
Resumo:
This paper describes two methods to cancel the effect of two kinds of leakage signals which may be presented when an antenna is measured in a planar near-field range. One method tries to reduce leakage bias errors from the receiver¿s quadrature detector and it is based on estimating the bias constant added to every near-field data sample. Then, that constant is subtracted from the data, removing its undesired effect on the far-field pattern. The estimation is performed by back-propagating the field from the scan plane to the antenna under test plane (AUT) and averaging all the data located outside the AUT aperture. The second method is able to cancel the effect of the leakage from faulty transmission lines, connectors or rotary joints. The basis of this method is also a reconstruction process to determine the field distribution on the AUT plane. Once this distribution is known, a spatial filtering is applied to cancel the contribution due to those faulty elements. After that, a near-field-to-far-field transformation is applied, obtaining a new radiation pattern where the leakage effects have disappeared. To verify the effectiveness of both methods, several examples are presented.