425 resultados para olefin metathesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/alpha-olefin copolymers was studied by atomic force microscopy (AFM) and the thermal-fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular-like morphology, and the mixed morphology was observed after stepwise crystallization from phase-separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal-fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean (L) over bar (n), the weight mean (L) over bar (w), and the broadness index I = (L) over bar (w)/(L) over bar (n). It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal-fractionation technique. The effects of temperature range, temperature-dependent specific heat capacity C-p of copolymer, and the molecular weight on the results of thermal fractionation were discussed,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we describe an improved thermal fractionation technique used to characterize the polydispersity of crystalline ethylene sequence length (CESL) of ethylene/alpha -olefin copolymers. After stepwise isothermal crystallization, the crystalline ethylene sequences are sorted into groups by their lengths. The CESLs are estimated using melting points of known hydrocarbons. The content of each group is determined using the calibrated peak area. The statistical terms: the arithmetic mean (L) over bar (n), the weighted mean (L) over bar (w) and the broadness index I = (L) over bar (w)/(L) over bar (n) are used to describe the distribution of CESL. Results show that improved thermal fractionation technique can quantitatively characterize the polydispersity of CESL with a high degree of accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of metallocene complexes which can be used as catalysts in the presence of MAO for olefin polymerization were discussed in the present paper. The metallocene complexes have been characterized by IR, H-1 NMR, EI-MS spectra and element analyses; The catalytic features of Olefin polymerization were studied under different conditions. Metallocenes in which metals is Ti had no activity for ethylene polymerization, Polymers with different features can be obtained by using different catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polymer-supported metallocene catalyst with crosslinked poly(styrene-co-acrylamide) (PSAm) as the support has been prepared and characterized. The probability of long sequences of acrylamide (Am) in PSAm is still low even at an Am amount of 32.8 mol %, implying the relatively homogeneous distribution of Am. The infrared spectra of PSAm and the supported catalyst substantiate that an amide group in PSAm coordinates with methylaluminoxane through both oxygen and nitrogen atoms. Ethylene/alpha-octene copolymerization showed that the catalytic activity is not markedly affected by adding alpha-octene. C-13 NMR analysis of the ethylene/alpha-octene copolymer indicated that the composition distribution of the copolymer is uniform. (C) 1999 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting points(T-m), crystalline temperature(T-c) and crystallinity(chi(c)) of propylene/alpha-olefin (pentene-l, octene-1 and decene-1) copolymers have been investigated, The results show that the T-m, T-c and chi(c) of the copolymers are lower than those of propylene homopolymer, indicating that lower alpha-olefin incorporation in copolymer has strongly hampered the crystallization of propylene, From critical crystalline sequence length of several propylene/alpha-olefin copolymers, it can be seen that a long chain alpha-olefin has much stronger effect on crystallization of PP than a short alpha-olefin does.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been undertaken by use of ESCA in the characterization of the central metal(Zr) of dichlorozirconocene/methylaluminoxane homogeneous olefin polymerization catalyst. The change of electron density shown by a shift in ESCA signals (181.8 - 182.7eV) indicates that the catalytic species are ''cation-like''. Within the range of detecting sensitivity of ESCA spectrometer, only a part of the new catalytic derivative was formed. The influence of complexion time and Al : Zr ratio on the formation of the catalytic zirconocene cation has also been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of 1,3-cyclohexadiene(tricarbonyl)iron (1) with ortho-substituted aryllithium reagents ArLi (Ar=o-CH3C6H4, o-CH3OC6H4, o-CF3C6H4) in ether at low temperature, and subsequent alkylation of the acylmetalates formed with Et3OBF4 in aqueous solution at 0-degrees-C or in CH2Cl2 at -60-degrees-C gave the 1,3-cyclohexadiene(dicarbonyl)[ethoxy(aryl)carbene]iron complexes (eta4-C6H8)(CO)2FeC(OC2H5)Ar (3, Ar = o-CH3C6H4; 4, Ar = o-CH3OC6H4), and the isomerized product (eta3-C6H8)(CO)2FeC(OC2H5)C6H4CF3-o (5), respectively, among which the structure of 3 has been established by an X-ray diffraction study. Complex 3 is monoclinic, space group P2(1) with a = 8.118(4), b = 7.367(4), c = 14.002(6) angstrom, beta = 104.09(3)-degrees, V = 812.2(6) angstrom3, Z = 2, D(c) = 1.39 g cm-3, R = 0.056, and R(w) = 0.062 for 976 observed reflections. Complexes 3 and 5 were converted into the chelated allyliron phosphine adducts(eta3-C6H8)(CO)2(PR31)FeC(OC2H5)Ar (6, Ar = o-CH3C6H4, R1 = Ph; 7, Ar = o-CH3C6H4, R1 = OPh; 9, Ar = o-CF3C6H4, R1 = Ph), by reaction with phosphines in petroleum ether at low temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady diffusion kinetic, recently advanced by this laboratory, is applied to the examination of some polymerization and molecular chain structure problems. Hitherto deemed "anomalous" phenomena, such as the faster rate of copolymerization of ethylene/alpha-olefin than the homopolymerization of ethylene and the enrichment in the incorporation of a higher alpha-olefin in its copolymerization with ethylene by a lower alpha-olefin, are reasonably explained by unsteady diffusion of monomers. Molecular chain structure of copolymers, such as compositional heterogeneity and its dependence on comonomer incorporation originates from the difference in diffusion coefficients of the monomers. A copolymer composition equation taking into consideration the unsteady diffusion was developed. In cases where simulated curves were compared with experimental curves, good agreements were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a brief review of R&D researches for light olefin synthesis directly and indirectly from synthesis gas in the Dalian Institute of Chemical Physics (DICP). The first pilot plant test was on methanol to olefin (MTO) reaction and was finished in 1993, which was based on ZSM-5-type catalyst and fixed bed reaction. In the meantime, a new indirect method designated as SDTO (syngas via dimethylether to olefin) was proposed. In this process, metal-acid bifunctional catalyst was applied for synthesis gas to dimethylether(DME) reaction, and modified SAPO-34 catalyst that was synthesized by a new low-cost method with optimal crystal size was used to convert DME to light olefin on a fluidized bed reactor. The pilot plant test on SDTO was performed and finished in 1995. Evaluation of the pilot plant data showed that 190-200 g of DME were yielded by single-pass for each standard cubic meter of synthesis gas. For the second reaction, 1.880 tons of DME or 2.615 tons of methanol produced 1 ton of light olefins, which constitutes of 0.533 ton of ethylene, 0.349 ton of propylene and 0.118 ton of butene. DICP also paid some attention on direct conversion of synthesis gas to light olefins. A semi-pilot plant test (catalyst 1.8 1) was finished in 1995 with a CO conversion > 70% and a C(2)(=)-C(4)(=) olefin selectivity 71-74% in 1000 h. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past year has seen remarkable advances both in methanol to olefin process development and in understanding the catalysts and reactions invoked. The methanol to olefin process is now on the way to being commercialized locally with economic advantages in comparison with other natural gas utilization technologies and conventional naphtha cracking processes. Using a specially designed procedure, a catalyst for the selective synthesis of ethylene from methanol has been reliably reproduced. The relationships between catalyst properties and reaction performances are clearer than ever before.